wow - loopback in sim actually worksgit status

This commit is contained in:
Yehowshua Immanuel 2023-09-28 06:57:38 -04:00
parent ad1bdfc8b1
commit 9f90b00b25
10 changed files with 96 additions and 261 deletions

View file

@ -21,24 +21,13 @@
# ================================================================
# Please modify the following for your installation and setup
# Directory containing this tutorial
TUTORIAL ?= ..
# Set this to the command that invokes your Verilog simulator
# V_SIM ?= verilator
# V_SIM ?= iverilog
# V_SIM ?= cvc
# V_SIM ?= cver
# V_SIM ?= vcsi
# V_SIM ?= vcs
# V_SIM ?= modelsim
# V_SIM ?= ncsim
# V_SIM ?= ncverilog
ifeq ($(V_SIM),verilator)
V_SIM += -Xv --no-timing
endif
BDPI_SRC = bdpi/uart_sim_device.c
BDPI_OBJ = bdpi/uart_sim_device.o
# ================================================================
# You should not have to change anything below this line
@ -67,6 +56,9 @@ BSC_COMP_FLAGS += \
+RTS -K128M -RTS -show-range-conflict \
$(BSC_COMP_FLAG1) $(BSC_COMP_FLAG2) $(BSC_COMP_FLAG3)
$(BDPI_OBJ): $(BDPI_SRC)
gcc -c -o $@ $< -I $(BSC_DIR)/include
BSC_LINK_FLAGS += -keep-fires
BSC_PATHS = -p src/:+
@ -112,9 +104,9 @@ b_compile:
@echo Compiling for Bluesim finished
.PHONY: b_link
b_link:
b_link: $(BDPI_OBJ)
@echo Linking for Bluesim ...
bsc -e $(TOPMODULE) -sim -o $(B_SIM_EXE) $(B_SIM_DIRS) $(BSC_LINK_FLAGS) $(BSC_PATHS)
bsc -e $(TOPMODULE) -sim -o $(B_SIM_EXE) $(B_SIM_DIRS) $(BSC_LINK_FLAGS) $(BSC_PATHS) $(BDPI_OBJ)
@echo Linking for Bluesim finished
.PHONY: b_sim

View file

@ -2,6 +2,22 @@
#include <termios.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <stdbool.h>
static volatile bool ctrl_c_received = false;
void sigint_handler(int sig_num) {
ctrl_c_received = true;
}
void setup_sigint_handler() {
signal(SIGINT, sigint_handler);
}
bool was_ctrl_c_received() {
return ctrl_c_received;
}
static struct termios oldt, newt;
@ -25,6 +41,11 @@ char get_char_from_terminal() {
return c;
}
void write_char_to_terminal(char chr) {
putchar(chr);
fflush(stdout);
}
int is_char_available() {
struct timeval tv;
fd_set read_fd_set;

View file

@ -19,7 +19,7 @@ module mkTestbench();
cfg.allowWriteResponseBypass = False;
// BRAM2Port#(Bit#(8), Bit#(8)) dut0 <- mkBRAM2Server(cfg);
cfg.loadFormat = tagged Hex "bram2.txt";
BRAM2Port#(Bit#(8), Bit#(8)) dut1 <- mkBRAM2Server(cfg);
BRAM1Port#(Bit#(8), Bit#(8)) dut1 <- mkBRAM1Server(cfg);
rule counting;
count <= count + 1;
@ -31,21 +31,21 @@ module mkTestbench();
delay(10);
action
$display("count = %d", count);
dut1.portB.request.put(makeRequest(False, 0, 0));
dut1.portA.request.put(makeRequest(False, 0, 0));
endaction
action
$display("count = %d", count);
$display("dut1read[0] = %x", dut1.portB.response.get);
dut1.portB.request.put(makeRequest(False, 1, 0));
$display("dut1read[0] = %x", dut1.portA.response.get);
dut1.portA.request.put(makeRequest(False, 1, 0));
endaction
action
$display("count = %d", count);
$display("dut1read[1] = %x", dut1.portB.response.get);
dut1.portB.request.put(makeRequest(False, 2, 0));
$display("dut1read[1] = %x", dut1.portA.response.get);
dut1.portA.request.put(makeRequest(False, 2, 0));
endaction
action
$display("count = %d", count);
$display("dut1read[2] = %x", dut1.portB.response.get);
$display("dut1read[2] = %x", dut1.portA.response.get);
endaction
delay(100);
action

View file

@ -1,40 +0,0 @@
package ClkDivider(mkClkDivider, ClkDivider(..)) where
interface (ClkDivider :: # -> *) hi =
{
reset :: Action
;isAdvancing :: Bool
;isHalfCycle :: Bool
}
mkClkDivider :: Handle -> Module (ClkDivider hi)
mkClkDivider fileHandle = do
counter <- mkReg(0 :: UInt (TLog hi))
let hi_value :: UInt (TLog hi) = (fromInteger $ valueOf hi)
let half_hi_value :: UInt (TLog hi) = (fromInteger $ valueOf (TDiv hi 2))
let val :: Real = (fromInteger $ valueOf hi)
let msg = "Clock Div Period : " + (realToString val) + "\n"
hPutStr fileHandle msg
hPutStr fileHandle genModuleName
addRules $
rules
{-# ASSERT fire when enabled #-}
{-# ASSERT no implicit conditions #-}
"tick" : when True ==> action
$display (counter)
counter := if (counter == hi_value)
then 0
else counter + 1
return $
interface ClkDivider
reset :: Action
reset = do
counter := 0
isAdvancing :: Bool
isAdvancing = (counter == hi_value)
isHalfCycle = (counter == half_hi_value)

View file

@ -1,53 +0,0 @@
package Deserializer(
mkDeserialize,
IDeserializer(..),
State(..))
where
import ClkDivider
import State
interface (IDeserializer :: # -> # -> *) clkFreq baudRate =
get :: Bit 8
putBitIn :: (Bit 1) -> Action {-# always_enabled, always_ready #-}
mkDeserialize :: Handle -> Module (IDeserializer clkFreq baudRate)
mkDeserialize fileHandle = do
ftdiRxIn :: Wire(Bit 1) <- mkBypassWire
shiftReg :: Reg(Bit 8) <- mkReg(0)
ftdiState <- mkReg(IDLE)
clkDivider :: (ClkDivider (TDiv clkFreq baudRate)) <- mkClkDivider fileHandle
addRules $
rules
{-# ASSERT fire when enabled #-}
"IDLE" : when (ftdiState == IDLE), (ftdiRxIn == 0) ==>
do
clkDivider.reset
ftdiState := ftdiStateNext ftdiState
{-# ASSERT fire when enabled #-}
"NOT IDLE" : when (ftdiState /= IDLE), (clkDivider.isAdvancing) ==>
do
ftdiState := ftdiStateNext ftdiState
{-# ASSERT fire when enabled #-}
"SAMPLING" : when
DATA(n) <- ftdiState,
n >= 0,
n <= 7,
let sampleTrigger = clkDivider.isHalfCycle
in sampleTrigger
==>
do
shiftReg := ftdiRxIn ++ shiftReg[7:1]
return $
interface IDeserializer
{get = shiftReg when (ftdiState == STOP), (clkDivider.isAdvancing)
;putBitIn bit =
ftdiRxIn := bit
}

View file

@ -1,52 +0,0 @@
package Serializer(
mkSerialize,
ISerializer(..),
State(..))
where
import ClkDivider
import State
serialize :: State -> Bit 8 -> Bit 1
serialize ftdiState dataReg =
case ftdiState of
START -> 1'b0
(DATA n) -> dataReg[n:n]
_ -> 1'b1
interface (ISerializer :: # -> # -> *) clkFreq baudRate =
putBit8 :: (Bit 8) -> Action {-# always_enabled, always_ready #-}
bitLineOut :: Bit 1 {-# always_ready #-}
mkSerialize :: Handle -> Module (ISerializer clkFreq baudRate)
mkSerialize fileHandle = do
ftdiTxOut :: Wire(Bit 1) <- mkBypassWire
dataReg :: Reg(Bit 8) <- mkReg(0)
ftdiState <- mkReg(IDLE)
clkDivider :: (ClkDivider (TDiv clkFreq baudRate)) <- mkClkDivider fileHandle
addRules $
rules
{-# ASSERT fire when enabled #-}
"ADVANCE UART STATE WHEN NOT IDLE" : when
(ftdiState /= IDLE),
(clkDivider.isAdvancing) ==>
do
ftdiState := ftdiStateNext ftdiState
{-# ASSERT fire when enabled #-}
"BIT LINE" : when True ==>
do
ftdiTxOut := serialize ftdiState dataReg
return $
interface ISerializer
putBit8 bit8Val =
do
clkDivider.reset
dataReg := bit8Val
ftdiState := ftdiStateNext ftdiState
when (ftdiState == IDLE)
bitLineOut = ftdiTxOut

View file

@ -1,20 +0,0 @@
package State(
State(..),
ftdiState') where
data State = IDLE
| START
| DATA (UInt (TLog 8))
| PARITY
| STOP
deriving (Bits, Eq, FShow)
ftdiState' :: State -> State
ftdiState' state =
case state of
IDLE -> START
START -> DATA(0)
DATA(7) -> PARITY
DATA(n) -> DATA(n+1)
PARITY -> STOP
STOP -> IDLE

View file

@ -1,56 +0,0 @@
-- TOPMODULE=mkTop make b_compile
package Top(mkTop, ITop(..), mkSim) where
import Deserializer
import Serializer
type FCLK = 25_000_000
type BAUD = 9_600
interface ITop =
ftdi_rxd :: Bit 1 {-# always_ready #-}
led :: Bit 8 {-# always_ready #-}
ftdi_txd :: (Bit 1) -> Action {-# always_enabled, always_ready #-}
{-# properties mkTop={verilog} #-}
mkTop :: Module (ITop)
mkTop = do
fileHandle <- openFile "compile.log" WriteMode
deserializer :: (IDeserializer FCLK BAUD) <- mkDeserialize fileHandle
serializer :: (ISerializer FCLK BAUD) <- mkSerialize fileHandle
ftdiBitIn :: Wire(Bit 1) <- mkBypassWire
rxReg :: Reg(Bit 8) <- mkReg(0)
messageM $ "Hallo!!" + (realToString 5)
addRules $
rules
when True ==>
do
rxReg := deserializer.get
serializer.putBit8 $ deserializer.get
when True ==>
deserializer.putBitIn ftdiBitIn
return $
interface ITop
{ftdi_rxd = serializer.bitLineOut
;led = rxReg
;ftdi_txd bitIn = ftdiBitIn := bitIn}
mkSim :: Module Empty
mkSim = do
-- count :: Reg(UInt 3) <- mkReg(0)
count :: Reg(UInt 3) <- mkReg(0)
addRules $
rules
"count" : when True ==> action
count := unpack ((1'b1) ++ (pack count)[2:1])
$display count
"end sim" : when (count == 6) ==> action
$finish
return $
interface Empty

View file

@ -1,5 +1,8 @@
package Core;
import ClkDivider::*;
import Prelude::*;
interface Core#(numeric type clkFreq);
method Bit#(8) get_char();
method Bit#(8) get_led();
@ -7,13 +10,31 @@ interface Core#(numeric type clkFreq);
endinterface
module mkCore(Core#(clkFreq));
Wire#(Bit#(8)) uart_out <- mkWire;
// Reg # (UInt # (32)) counter <- mkReg(0);
Reg # (UInt # (TLog # (clkFreq))) counter <- mkReg(0);
Wire # (Bool) tick_second <- mkDWire(False);
Wire # (Bit # (8)) uart_out <- mkWire;
Reg # (Bit # (8)) led_out <- mkReg(0);
Integer clkFreqInt = valueOf(clkFreq);
UInt#(TLog#(clkFreq)) clkFreqUInt = fromInteger(clkFreqInt);
Real val = fromInteger(clkFreqInt);
messageM("mkCore clkFreq" + realToString(val));
rule second_counter;
counter <= (counter == clkFreqUInt) ? 0 : counter + 1;
tick_second <= True;
endrule
rule update_led(tick_second);
led_out <= led_out + 1;
endrule
method Bit#(8) get_char();
return uart_out;
endmethod
method Bit#(8) get_led();
return uart_out;
return led_out;
endmethod
method Action put_char(Bit#(8) byte_in);
uart_out <= byte_in;

View file

@ -5,6 +5,15 @@ export ITop(..);
// export mkSim;
import "BDPI" function Action init_terminal();
import "BDPI" function Action restore_terminal();
import "BDPI" function Bit#(8) get_char_from_terminal();
import "BDPI" function Int#(32) is_char_available();
import "BDPI" function Action write_char_to_terminal(Bit#(8) chr);
import "BDPI" function Action setup_sigint_handler();
import "BDPI" function Bool was_ctrl_c_received();
import Deserializer::*;
import Core::*;
import Serializer::*;
@ -29,46 +38,59 @@ module mkTop(ITop);
ISerializer # (FCLK, BAUD) serializer <- mkSerialize(fileHandle);
Core # (FCLK) core <- mkCore();
Reg#(Bit#(8)) ledReg <- mkReg(0);
Reg#(Bit#(8)) persist_led <- mkReg(0);
messageM("Hallo!!" + realToString(5));
rule attach_core_outputs;
ledReg <= core.get_led;
// connect up core device
rule core_led_o;
persist_led <= core.get_led;
endrule
rule core_char_device_o;
serializer.putBit8(core.get_char);
endrule
rule attach_core_inputs;
rule core_char_device_i;
core.put_char(deserializer.get);
endrule
// output methods
method Bit#(1) ftdi_rxd;
return serializer.bitLineOut;
endmethod
method Bit#(8) led;
return ledReg;
endmethod
method Action ftdi_txd(Bit#(1) bitIn);
deserializer.putBitIn(bitIn);
endmethod
method Bit#(8) led;
return persist_led;
endmethod
endmodule
module mkSim(Empty);
BRAM_Configure cfg = defaultValue;
// Define a 3-bit register named count
Reg#(UInt#(3)) count <- mkReg(0);
Reg#(UInt#(3)) count <- mkReg(0);
Reg#(Bool) init_C_functions <- mkReg(False);
Core#(FCLK) core <- mkCore();
// Rule to update and display the count
rule tick (True);
count <= unpack({1'b1, (pack(count))[2:1]});
($display)(count);
rule init_c_functions_once (!init_C_functions);
init_terminal();
setup_sigint_handler();
init_C_functions <= True;
endrule
rule core_char_device_o;
write_char_to_terminal(core.get_char);
endrule
rule core_char_device_i(is_char_available() == 1);
core.put_char(get_char_from_terminal());
endrule
// Rule to finish the simulation when count reaches 6
rule end_sim (count == 6);
rule end_sim (was_ctrl_c_received());
restore_terminal();
$display("GOT CTRL+C");
($finish)();
endrule
endmodule