FastWaveBackend/src/vcd/signal.rs
2024-01-07 11:54:40 +01:00

740 lines
26 KiB
Rust

use std::fmt;
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use super::types;
use super::types::SignalIdx;
use num::BigUint;
// Index to the least significant byte of a timestamp
// value on the timeline
#[derive(Debug, Copy, Clone)]
pub struct LsbIdxOfTmstmpValOnTmln(pub(super) u32);
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum SignalType {
Event,
Integer,
Parameter,
Real,
RealTime,
Reg,
Str,
Supply0,
Supply1,
Time,
Tri,
TriAnd,
TriOr,
TriReg,
Tri0,
Tri1,
WAnd,
Wire,
WOr,
SVLogic,
SVInt,
SVShortInt,
SVLongInt,
SVChar,
SVBit,
SVShortReal,
}
#[derive(Debug, PartialEq)]
pub enum SignalValue {
BigUint(BigUint),
String(String),
}
impl fmt::Display for SignalValue {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
SignalValue::BigUint(num) => { write!(f, "BigUnit: {num}") }
SignalValue::String(val) => {write!(f, "String: {val}")}
}
}
}
pub struct QueryResult<T> {
pub current: Option<(TimeStamp, T)>,
pub next: Option<TimeStamp>,
}
impl fmt::Display for QueryResult<SignalValue> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(current: {:?}, next: {:?})", self.current, self.next)
}
}
pub struct Signal<'a>(pub(super) &'a SignalEnum);
impl<'a> Signal<'a> {
pub fn name(&self) -> String {
let Signal(signal_enum) = &self;
signal_enum.name()
}
pub fn name_with_index(&self) -> String {
let Signal(signal_enum) = &self;
signal_enum.name_with_index()
}
pub fn index(&self) -> Option<String> {
let Signal(signal_enum) = &self;
signal_enum.index()
}
pub fn path(&self) -> &[String] {
match self.0 {
SignalEnum::Data { path, .. } => path,
SignalEnum::Alias { path, .. } => path,
}
}
pub fn signal_type(&self) -> Option<&SignalType> {
let Signal(signal_enum) = &self;
signal_enum.signal_type()
}
pub fn real_idx(&self) -> SignalIdx {
match self.0 {
SignalEnum::Data { self_idx, .. } => *self_idx,
SignalEnum::Alias { signal_alias, .. } => *signal_alias,
}
}
pub fn num_bits(&self) -> Option<u32> {
let Signal(signal_enum) = &self;
signal_enum.bits_required()
}
// NOTE: (zoq) I am removing thse because they aren't used in Surfer so I can't test them
// properly
/*
pub fn query_string_val_on_tmln(
&self,
desired_time: &BigUint,
vcd: &types::VCD,
) -> Result<String, SignalErrors> {
let Signal(signal_enum) = &self;
signal_enum
.query_string_val_on_tmln(desired_time, &vcd.tmstmps_encoded_as_u8s, &vcd.all_signals)
.map(|QueryResult{current, next: _}| current.map(|c| c.1))
}
pub fn query_num_val_on_tmln(
&self,
desired_time: &BigUint,
vcd: &types::VCD,
) -> Result<Option<BigUint>, SignalErrors> {
let Signal(signal_enum) = &self;
signal_enum
.query_num_val_on_tmln(desired_time, &vcd.tmstmps_encoded_as_u8s, &vcd.all_signals)
.map(|QueryResult{current, next: _}| current.map(|c| c.1))
}
*/
pub fn query_val_on_tmln(
&self,
desired_time: &BigUint,
vcd: &types::VCD,
) -> Result<QueryResult<SignalValue>, SignalErrors> {
let Signal(signal_enum) = &self;
let num_query_out = signal_enum.query_num_val_on_tmln(
desired_time,
&vcd.tmstmps_encoded_as_u8s,
&vcd.all_signals,
);
let str_query_out = signal_enum.query_string_val_on_tmln(
desired_time,
&vcd.tmstmps_encoded_as_u8s,
&vcd.all_signals,
);
// Both num and str will return the newest value that is closest to
// the desired time. If both have valid values, select the most recent
// one
match (num_query_out, str_query_out) {
(Ok(num_result), Ok(str_result)) => {
let next = match (num_result.next, str_result.next) {
(Some(n), Some(s)) => Some(n.min(s)),
(Some(n), None) => Some(n),
(None, Some(s)) => Some(s),
(None, None) => None,
};
match (num_result.current, str_result.current) {
(Some((num_time, num_value)), Some((str_time, str_value))) => {
if num_time > str_time {
Ok(QueryResult {
current: Some((num_time, SignalValue::BigUint(num_value))),
next,
})
} else {
Ok(QueryResult {
current: Some((str_time, SignalValue::String(str_value))),
next,
})
}
}
(Some((num_time, num_val)), None) => Ok(QueryResult {
current: Some((num_time, SignalValue::BigUint(num_val))),
next,
}),
(None, Some((str_time, str_value))) => Ok(QueryResult {
current: Some((str_time, SignalValue::String(str_value))),
next,
}),
(None, None) => Ok(QueryResult {
current: None,
next,
}),
}
}
(_e, Err(e)) => Err(e),
(Err(e), _e) => Err(e),
}
}
}
#[derive(Debug)]
pub(super) enum SignalEnum {
Data {
name: String,
path: Vec<String>,
signal_type: SignalType,
/// The optional [start:end] part of the signal name that is sometimes
/// added to signals
index: Option<String>,
/// I've seen a 0 bit signal parameter in a xilinx
/// simulation before that gets assigned 1 bit values.
/// I consider this to be bad behavior. We capture such
/// errors in the following type:
signal_error: Option<String>,
num_bits: Option<u32>,
num_bytes: Option<u16>,
/// TODO : may be able to remove self_idx
self_idx: SignalIdx,
/// A signal may take on a new value and hold that value
/// for sometime. We only need to record the value of a signal
/// when it changes(the is what VCDs tend to do).
/// A signal may need x amount of bytes to record its largest
/// possible value, so we record every single value of a given
/// signal as a sequence of x number of u8s.
/// For example, we might find that `my_signal.
/// nums_encoded_as_fixed_width_le_u8`
/// has two 32 bit values, namely, 1 and 2, encoded as follows:
/// my_signal.nums_encoded_as_fixed_width_le_u8 = vec![1u8, 0u8,
/// 0u8, 0u8, 2u8, 0u8, 0u8, 0u8];
nums_encoded_as_fixed_width_le_u8: Vec<u8>,
string_vals: Vec<String>,
/// we could do Vec<(LsbIdxOfTmstmpValOnTmln, u8)>, but I
/// suspect that Vec<LsbIdxOfTmstmpValOnTmln> is more cache
/// friendly. We use ``LsbIdxOfTmstmpValOnTmln`` to index into
/// the LSB of a particular timestamp encoded as the
/// minimum length u8 sequence within
/// ``vcd.tmstmps_encoded_as_u8s``, and we use the values in
/// ``byte_len_of_num_tmstmp_vals_on_tmln`` to determine how
/// many u8 values a particular timestamp is composed of.
lsb_indxs_of_num_tmstmp_vals_on_tmln: Vec<LsbIdxOfTmstmpValOnTmln>,
byte_len_of_num_tmstmp_vals_on_tmln: Vec<u8>,
byte_len_of_string_tmstmp_vals_on_tmln: Vec<u8>,
lsb_indxs_of_string_tmstmp_vals_on_tmln: Vec<LsbIdxOfTmstmpValOnTmln>,
},
Alias {
name: String,
path: Vec<String>,
signal_alias: SignalIdx,
},
}
#[derive(Debug)]
pub enum SignalErrors {
EmptyTimeline,
TimelineNotMultiple,
StrTmlnLenMismatch,
OrderingFailure {
lhs_time: BigUint,
mid_time: BigUint,
rhs_time: BigUint,
},
PointsToAlias,
NoNumBytes,
Other(String),
}
// these are thin type aliases primarily to make code more readable later on
type TimeStamp = BigUint;
type SignalValNum = BigUint;
// getter functions
impl SignalEnum {
pub fn name(&self) -> String {
match self {
SignalEnum::Data { name, .. } => name,
SignalEnum::Alias { name, .. } => name,
}
.clone()
}
pub fn signal_type(&self) -> Option<&SignalType> {
match self {
SignalEnum::Data { signal_type, .. } => Some(signal_type),
// TODO: Follow aliases?
SignalEnum::Alias { .. } => None,
}
.clone()
}
pub fn name_with_index(&self) -> String {
match self {
SignalEnum::Data {
name, index: None, ..
} => format!("{name}"),
SignalEnum::Data {
name,
index: Some(size),
..
} => format!("{name} {size}"),
SignalEnum::Alias { name, .. } => name.clone(),
}
}
pub fn index(&self) -> Option<String> {
match self {
SignalEnum::Data { index, .. } => index.clone(),
SignalEnum::Alias { .. } => None,
}
}
}
// helper functions ultimately used by Signal's query functions later on
impl SignalEnum {
/// Computes the bytes required to store a signal's numerical value
/// using the num_bits which another function would provide from
/// the num_bits field of the Signal::Data variant.
pub(super) fn bytes_required(num_bits: u32, name: &String) -> Result<u16, String> {
let bytes_required = (num_bits / 8) + if (num_bits % 8) > 0 { 1 } else { 0 };
let bytes_required = u16::try_from(bytes_required).map_err(|_| {
format!(
"Error near {}:{}. Signal {name} of length num_bits requires \
{bytes_required} > 65536 bytes.",
file!(),
line!()
)
})?;
Ok(bytes_required)
}
/// This function takes an event_idx which(is used to index into the
/// global timeline field of a VCD struct instance) and computes
/// the time pointed at by event_idx.
/// This function also uses the same idx to index into the
/// string_vals field of an instance of the Signal::Data variant
/// and gets a string value.
/// The function returns a tuple of the timestamp and string value.
fn time_and_str_val_at_event_idx(
&self,
event_idx: usize,
tmstmps_encoded_as_u8s: &Vec<u8>,
) -> Result<(TimeStamp, &str), SignalErrors> {
let (
string_vals,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
byte_len_of_string_tmstmp_vals_on_tmln,
) = match self {
SignalEnum::Data {
string_vals,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
byte_len_of_string_tmstmp_vals_on_tmln,
..
} => Ok((
string_vals,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
byte_len_of_string_tmstmp_vals_on_tmln,
)),
SignalEnum::Alias { .. } => Err(SignalErrors::PointsToAlias),
}?;
// get index
let LsbIdxOfTmstmpValOnTmln(timestamp_idx) =
lsb_indxs_of_string_tmstmp_vals_on_tmln[event_idx];
let timestamp_idx = timestamp_idx as usize;
if byte_len_of_string_tmstmp_vals_on_tmln.is_empty() {
return Err(SignalErrors::EmptyTimeline);
}
// form timestamp
let byte_len = byte_len_of_string_tmstmp_vals_on_tmln[event_idx] as usize;
let timestamp = &tmstmps_encoded_as_u8s[timestamp_idx..(timestamp_idx + byte_len)];
let timestamp = BigUint::from_bytes_le(timestamp);
// get signal value
let signal_val = string_vals[event_idx].as_str();
Ok((timestamp, signal_val))
}
/// This function takes an event_idx which(is used to index into the
/// global timeline field of a VCD struct instance) and computes
/// the time pointed at by event_idx.
/// This function also uses the same idx to index into the
/// nums_encoded_as_fixed_width_le_u8 and
/// byte_len_of_num_tmstmp_vals_on_tmln fields of an instance
/// of the Signal::Data variant to compute the signal's corresponding
/// numerical value at the time pointed at by event_didx.
/// The function returns a tuple of the timestamp and numerical
/// value.
fn time_and_num_val_at_event_idx(
&self,
event_idx: usize,
tmstmps_encoded_as_u8s: &Vec<u8>,
) -> Result<(TimeStamp, SignalValNum), SignalErrors> {
let (
num_bytes,
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
) = match self {
SignalEnum::Data {
num_bytes,
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
..
} => Ok((
num_bytes,
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
)),
SignalEnum::Alias { .. } => Err(SignalErrors::PointsToAlias),
}?;
// get index
let LsbIdxOfTmstmpValOnTmln(timestamp_idx) =
lsb_indxs_of_num_tmstmp_vals_on_tmln[event_idx];
let timestamp_idx = timestamp_idx as usize;
// form timestamp
let byte_len = byte_len_of_num_tmstmp_vals_on_tmln[event_idx] as usize;
let timestamp = &tmstmps_encoded_as_u8s[timestamp_idx..(timestamp_idx + byte_len)];
let timestamp = BigUint::from_bytes_le(timestamp);
// get signal value
let bytes_per_value = num_bytes.ok_or_else(|| SignalErrors::NoNumBytes)?;
let bytes_per_value = bytes_per_value as usize;
let start_idx = event_idx * bytes_per_value;
let end_idx = (event_idx + 1) * bytes_per_value;
let signal_val = &nums_encoded_as_fixed_width_le_u8[start_idx..end_idx];
let signal_val = BigUint::from_bytes_le(signal_val);
Ok((timestamp, signal_val))
}
fn bits_required(&self) -> Option<u32> {
match self {
SignalEnum::Data { num_bits, .. } => *num_bits,
// TODO: Follow aliases?
SignalEnum::Alias { .. } => None,
}
}
}
// Val and string query functions.
// Function that take in a desired time on the timeline for a
// specific signal and return a numerical or string value in a Result,
// or an error in a Result.
impl SignalEnum {
pub fn query_string_val_on_tmln(
&self,
desired_time: &BigUint,
tmstmps_encoded_as_u8s: &Vec<u8>,
all_signals: &Vec<SignalEnum>,
) -> Result<QueryResult<String>, SignalErrors> {
let signal_idx = match self {
Self::Data { self_idx, .. } => {
let SignalIdx(idx) = self_idx;
*idx
}
Self::Alias {
name: _,
signal_alias,
path: _,
} => {
let SignalIdx(idx) = signal_alias;
*idx
}
};
// if the signal idx points to data variant of the signal,
// extract:
// 1. the vector of string values
// 2. the vector of indices into timeline where events occur
// for this signal
// else we propagate Err(..).
let (string_vals, lsb_indxs_of_string_tmstmp_vals_on_tmln) = match &all_signals[signal_idx]
{
SignalEnum::Data {
ref string_vals,
ref lsb_indxs_of_string_tmstmp_vals_on_tmln,
..
} => Ok((string_vals, lsb_indxs_of_string_tmstmp_vals_on_tmln)),
SignalEnum::Alias { .. } => Err(SignalErrors::PointsToAlias),
}?;
// this signal should at least have some events, otherwise, trying to index into
// an empty vector later on would fail
if lsb_indxs_of_string_tmstmp_vals_on_tmln.is_empty() {
return Ok(QueryResult {
current: None,
next: None,
});
}
// the vector of string timeline lsb indices should have the same
// length as the vector of string values
if string_vals.len() != lsb_indxs_of_string_tmstmp_vals_on_tmln.len() {
return Err(SignalErrors::StrTmlnLenMismatch);
}
// check if we're requesting a value that occurs before the recorded
// start of the timeline
let (timeline_start_time, _) =
self.time_and_str_val_at_event_idx(0, tmstmps_encoded_as_u8s)?;
if *desired_time < timeline_start_time {
return Ok(QueryResult {
current: None,
next: Some(timeline_start_time),
});
}
let mut lower_idx = 0usize;
let mut upper_idx = lsb_indxs_of_string_tmstmp_vals_on_tmln.len() - 1;
let (timeline_end_time, timeline_end_val) =
self.time_and_str_val_at_event_idx(upper_idx, tmstmps_encoded_as_u8s)?;
// check if we're requesting a value that occurs beyond the end of the timeline,
// if so, return the last value in this timeline
if *desired_time > timeline_end_time {
return Ok(QueryResult {
current: Some((timeline_end_time, timeline_end_val.to_string())),
next: None,
});
}
// This while loop is the meat of the lookup. Performance is log2(n),
// where n is the number of events on the timeline.
// We can assume that by the time we get here, that the desired_time
// is an event that occurs on the timeline, given that we handle any events
// occuring after or before the recorded tiimeline in the code above.
while lower_idx <= upper_idx {
let mid_idx = lower_idx + ((upper_idx - lower_idx) / 2);
let (curr_time, curr_val) =
self.time_and_str_val_at_event_idx(mid_idx, tmstmps_encoded_as_u8s)?;
let ordering = curr_time.cmp(desired_time);
match ordering {
std::cmp::Ordering::Less => {
lower_idx = mid_idx + 1;
}
std::cmp::Ordering::Equal => {
let next_time = if mid_idx < lsb_indxs_of_string_tmstmp_vals_on_tmln.len() - 1 {
Some(
self.time_and_str_val_at_event_idx(
mid_idx + 1,
tmstmps_encoded_as_u8s,
)?
.0,
)
} else {
None
};
return Ok(QueryResult {
current: Some((curr_time, curr_val.to_string())),
next: next_time,
});
}
std::cmp::Ordering::Greater => {
upper_idx = mid_idx - 1;
}
}
}
let (left_time, left_val) =
self.time_and_str_val_at_event_idx(lower_idx - 1, tmstmps_encoded_as_u8s)?;
let (right_time, _) =
self.time_and_str_val_at_event_idx(lower_idx, tmstmps_encoded_as_u8s)?;
let ordered_left = left_time < *desired_time;
let ordered_right = *desired_time < right_time;
if !(ordered_left && ordered_right) {
return Err(SignalErrors::OrderingFailure {
lhs_time: left_time,
mid_time: desired_time.clone(),
rhs_time: right_time,
});
}
Ok(QueryResult {
current: Some((left_time, left_val.to_string())),
next: Some(right_time),
})
}
pub fn query_num_val_on_tmln(
&self,
desired_time: &BigUint,
tmstmps_encoded_as_u8s: &Vec<u8>,
all_signals: &Vec<SignalEnum>,
) -> Result<QueryResult<BigUint>, SignalErrors> {
let signal_idx = match self {
Self::Data { self_idx, .. } => {
let SignalIdx(idx) = self_idx;
*idx
}
Self::Alias {
name: _,
path: _,
signal_alias,
} => {
let SignalIdx(idx) = signal_alias;
*idx
}
};
// if the signal idx points to data variant of the signal,
// extract:
// 1. the vector of LE u8 compressed values
// 2. the vector of indices into timeline where events occur
// for this signal
// 3. the number of bytes per value for this signal
// else we propagate Err(..).
let (nums_encoded_as_fixed_width_le_u8, lsb_indxs_of_num_tmstmp_vals_on_tmln, num_bytes) =
match &all_signals[signal_idx] {
SignalEnum::Data {
num_bytes,
ref nums_encoded_as_fixed_width_le_u8,
ref lsb_indxs_of_num_tmstmp_vals_on_tmln,
..
} => {
if num_bytes.is_none() {
return Err(SignalErrors::NoNumBytes);
}
Ok((
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
num_bytes,
))
}
SignalEnum::Alias { .. } => Err(SignalErrors::PointsToAlias),
}?;
// this signal should at least have some events, otherwise, trying to index into
// an empty vector later on would fail
if lsb_indxs_of_num_tmstmp_vals_on_tmln.is_empty() {
return Ok(QueryResult {
current: None,
next: None,
});
}
// assertion that value_sequence is a proper multiple of
// timeline_markers
let bytes_required = num_bytes.ok_or_else(|| {
SignalErrors::Other(format!(
"Error near {}:{}. num_bytes empty.",
file!(),
line!()
))
})?;
if nums_encoded_as_fixed_width_le_u8.len()
!= (lsb_indxs_of_num_tmstmp_vals_on_tmln.len() * (bytes_required as usize))
{
return Err(SignalErrors::TimelineNotMultiple);
}
// check if we're requesting a value that occurs before the recorded
// start of the timeline
let (timeline_start_time, _) =
self.time_and_num_val_at_event_idx(0, tmstmps_encoded_as_u8s)?;
if *desired_time < timeline_start_time {
return Ok(QueryResult {
current: None,
next: Some(timeline_start_time),
});
}
let mut lower_idx = 0usize;
let mut upper_idx = lsb_indxs_of_num_tmstmp_vals_on_tmln.len() - 1;
let (timeline_end_time, timeline_end_val) =
self.time_and_num_val_at_event_idx(upper_idx, tmstmps_encoded_as_u8s)?;
// check if we're requesting a value that occurs beyond the end of the timeline,
// if so, return the last value in this timeline
if *desired_time > timeline_end_time {
return Ok(QueryResult {
current: Some((timeline_end_time, timeline_end_val)),
next: None,
});
}
// This while loop is the meat of the lookup. Performance is log2(n),
// where n is the number of events on the timeline.
// We can assume that by the time we get here, that the desired_time
// is an event that occurs on the timeline, given that we handle any events
// occuring after or before the recorded tiimeline in the code above.
while lower_idx <= upper_idx {
let mid_idx = lower_idx + ((upper_idx - lower_idx) / 2);
let (curr_time, curr_val) =
self.time_and_num_val_at_event_idx(mid_idx, tmstmps_encoded_as_u8s)?;
let ordering = curr_time.cmp(desired_time);
match ordering {
std::cmp::Ordering::Less => {
lower_idx = mid_idx + 1;
}
std::cmp::Ordering::Equal => {
let next_time = if mid_idx < lsb_indxs_of_num_tmstmp_vals_on_tmln.len() - 1 {
Some(
self.time_and_num_val_at_event_idx(
mid_idx + 1,
tmstmps_encoded_as_u8s,
)?
.0,
)
} else {
None
};
return Ok(QueryResult {
current: Some((curr_time, curr_val)),
next: next_time,
});
}
std::cmp::Ordering::Greater => {
upper_idx = mid_idx - 1;
}
}
}
let (left_time, left_val) =
self.time_and_num_val_at_event_idx(lower_idx - 1, tmstmps_encoded_as_u8s)?;
let (right_time, _) =
self.time_and_num_val_at_event_idx(lower_idx, tmstmps_encoded_as_u8s)?;
let ordered_left = left_time < *desired_time;
let ordered_right = *desired_time < right_time;
if !(ordered_left && ordered_right) {
return Err(SignalErrors::OrderingFailure {
lhs_time: left_time,
mid_time: desired_time.clone(),
rhs_time: right_time,
});
}
return Ok(QueryResult {
current: Some((left_time, left_val)),
next: Some(right_time),
});
}
}