use std::{fs::File}; use std::collections::HashMap; use chrono::format::format; use num::BigInt; use num::bigint::ToBigInt; use super::*; mod combinator_atoms; use combinator_atoms::*; mod types; use types::*; mod metadata; use metadata::*; mod scopes; use scopes::*; use std::num::{IntErrorKind, ParseIntError}; use function_name::named; /// Sometimes, variables can be listed outside of scopes. /// We call these floating vars. pub(super) fn parse_orphaned_vars<'a>( word_reader : &mut WordReader, vcd : &'a mut VCD, signal_map : &mut HashMap ) -> Result<(), String> { // create scope for unscoped signals if such a scope does not // yet exist let scope_name = "Orphaned Signals"; // set default scope_idx to the count of existing scope as we // generally set scope.self_idx to the number of existing scopes // when that particular scope was inserted let mut scope_idx = Scope_Idx(vcd.all_scopes.len()); // Override scope_idx if we find a scope named "Orphaned Signals" // already exists let mut scope_already_exists = false; for scope in &vcd.all_scopes { if scope.name == scope_name { scope_idx = scope.self_idx; scope_already_exists = true; break } } if !scope_already_exists { vcd.all_scopes.push( Scope { name: scope_name.to_string(), parent_idx: None, self_idx: scope_idx, child_signals: vec![], child_scopes: vec![] } ); vcd.scope_roots.push(scope_idx); } // we can go ahead and parse the current var as we've already encountered // "$var" before now. parse_var(word_reader, scope_idx, vcd, signal_map)?; loop { let next_word = word_reader.next_word(); // we shouldn't reach the end of the file here... if next_word.is_none() { let (f, l )= (file!(), line!()); let msg = format!("Error near {f}:{l}.\ Reached end of file without terminating parser"); Err(msg)?; }; let (word, cursor) = next_word.unwrap(); match word { "$var" => { parse_var(word_reader, scope_idx, vcd, signal_map)?; } "$scope" => {break} _ => { let (f, l )= (file!(), line!()); let msg = format!("Error near {f}:{l}.\ Expected $scope or $var, found {word} at {cursor:?}"); Err(msg)?; } }; } Ok(()) } #[named] fn parse_events<'a>( word_reader : &mut WordReader, vcd : &'a mut VCD, signal_map : &mut HashMap ) -> Result<(), String> { loop { let next_word = word_reader.next_word(); // if we've reached the end of the file, then there is obviously // nothing left to do... if next_word.is_none() {break}; let (word, cursor) = next_word.unwrap(); let Cursor(Line(_), Word(word_in_line_idx)) = cursor; // we only want to match on the first word in a line if word_in_line_idx != 1 {continue} match &word[0..1] { "$" => {} "#" => { let value = &word[1..]; // we try to parse the timestamp into the Value unsigned // variant used to hold the previous timestamp. Doing this // may fail with PosOverflow, which we would store in parse_ok, // and later try to remedy with bigger unsigned variants of Value. let parse_ok = if let Value::u8(_) = vcd.cursor { let value = value.parse::(); match value { Ok(value) => { vcd.cursor = Value::u8(value); Ok(()) } Err(e) => Err(e) } } else if let Value::u16(_) = vcd.cursor { let value = value.parse::(); match value { Ok(value) => { vcd.cursor = Value::u16(value); Ok(()) } Err(e) => Err(e) } } else if let Value::u32(_) = vcd.cursor { let value = value.parse::(); match value { Ok(value) => { vcd.cursor = Value::u32(value); Ok(()) } Err(e) => Err(e) } } else if let Value::u64(_) = vcd.cursor { let value = value.parse::(); match value { Ok(value) => { vcd.cursor = Value::u64(value); Ok(()) } Err(e) => Err(e) } } else { let value = BigInt::parse_bytes(value.as_bytes(), 10).ok_or( format!("failed to parse {value} as BigInt at {cursor:?}").as_str())?; vcd.cursor = Value::BigInt(value); Ok(()) }; // If there was no parse error, we don't evaluate any more logic // in this match arm and simply continue to the next iteration of // the outer loop to evaluate the next word. if parse_ok.is_ok() { continue } // Try parsing value as u16 since there was a previous // PosOverflow error, and record if this parse attempt // was Ok or Err in parse_ok. let parse_ok = { let e = parse_ok.unwrap_err(); // There could have been other parse errors... // Return Err below if there were. if e.kind() != &IntErrorKind::PosOverflow { Err(format!("{e:?}"))?; } match value.parse::() { Ok(value) => { vcd.cursor = Value::u16(value); Ok(()) } Err(e) => Err(e) } }; // If there was no parse error, we don't evaluate any more logic // in this match arm and simply continue to the next iteration of // the outer loop to evaluate the next word. if parse_ok.is_ok() { continue } // Try parsing value as u32 since there was a previous // PosOverflow error, and record if this parse attempt // was Ok or Err in parse_ok. let parse_ok = { let e = parse_ok.unwrap_err(); // There could have been other parse errors... // Return Err below if there were. if e.kind() != &IntErrorKind::PosOverflow { Err(format!("{e:?}"))?; } match value.parse::() { Ok(value) => { vcd.cursor = Value::u32(value); Ok(()) } Err(e) => Err(e) } }; // If there was no parse error, we don't evaluate any more logic // in this match arm and simply continue to the next iteration of // the outer loop to evaluate the next word. if parse_ok.is_ok() { continue } // Try parsing value as u64 since there was a previous // PosOverflow error, and record if this parse attempt // was Ok or Err in parse_ok. let parse_ok = { let e = parse_ok.unwrap_err(); // There could have been other parse errors... // Return Err below if there were. if e.kind() != &IntErrorKind::PosOverflow { Err(format!("{e:?}"))?; } match value.parse::() { Ok(value) => { vcd.cursor = Value::u64(value); Ok(()) } Err(e) => Err(e) } }; } "0" => { // lokup signal idx let hash = &word[1..].to_string(); let Signal_Idx(ref signal_idx) = signal_map.get(hash).ok_or( format!("failed to lookup signal {hash} at {cursor:?}").as_str())?; // account for fact that signal idx could be an alias, so there // could be one step of indirection let signal_idx = { let signal = vcd.all_signals.get(*signal_idx).unwrap(); match signal { Signal::Data {..} => {signal_idx.clone()} Signal::Alias {name, signal_alias} => { let Signal_Idx(ref signal_idx) = signal_alias; signal_idx.clone() } } }; // after handling potential indirection, go ahead and update the timeline // of the signal signal_idx references let signal = vcd.all_signals.get_mut(0usize).unwrap(); // let signal = vcd.all_signals.get_mut(signal_idx).unwrap(); match signal { Signal::Data {name, sig_type, num_bits, self_idx, timeline, scope_parent} => { let value = 0.to_bigint().unwrap(); let pair = (vcd.cursor.clone(), Value::u8(0)); timeline.push(pair); Ok(()) } Signal::Alias {..} => { let (f, l )= (file!(), line!()); let msg = format!( "Error near {f}:{l}, a signal alias should not point to a signal alias.\n\ This error occurred while parsing vcd file at {cursor:?}"); Err(msg) } }?; } // "1" => { // // lokup signal idx // let hash = &word[1..].to_string(); // let Signal_Idx(ref signal_idx) = signal_map.get(hash).ok_or( // format!("failed to lookup signal {hash} at {cursor:?}").as_str())?; // // account for fact that signal idx could be an alias, so there // // could be one step of indirection // let signal_idx = // { // let signal = vcd.all_signals.get(*signal_idx).unwrap(); // match signal { // Signal::Data {..} => {signal_idx.clone()} // Signal::Alias {name, signal_alias} => { // let Signal_Idx(ref signal_idx) = signal_alias; // signal_idx.clone() // } // } // }; // // after handling potential indirection, go ahead and update the timeline // // of the signal signal_idx references // let signal = vcd.all_signals.get_mut(signal_idx).unwrap(); // match signal { // Signal::Data {name, sig_type, num_bits, // self_idx, timeline, scope_parent} => { // let value = 1.to_bigint().unwrap(); // let pair = (TimeStamp(vcd.cursor.clone()), Sig_Value::Numeric(value)); // timeline.push(pair); // Ok(()) // } // Signal::Alias {..} => { // let (f, l )= (file!(), line!()); // let msg = format!( // "Error near {f}:{l}, a signal alias should not point to a signal alias.\n\ // This error occurred while parsing vcd file at {cursor:?}"); // Err(msg) // } // }?; // } _ => {} } } Ok(()) } pub fn parse_vcd(file : File) -> Result { let mut word_gen = WordReader::new(file); let header = parse_metadata(&mut word_gen)?; // later, we'll need to map parsed ascii symbols to their // respective signal indexes let mut signal_map = std::collections::HashMap::new(); // after we parse metadata, we form VCD object let mut vcd = VCD{ metadata : header, cursor : Value::u8(0), all_signals: vec![], all_scopes : vec![], scope_roots: vec![], }; // The last word parse_metadata saw determines how we proceed. // There may be some orphan vars we must parse first before // parsing scoped vars. let (f, l ) = (file!(), line!()); let msg = format!("Error near {f}:{l}. Current word empty!"); let (word, cursor) = word_gen.curr_word().expect(msg.as_str()); match word { "$scope" => { parse_scopes(&mut word_gen, None, &mut vcd, &mut signal_map) } "$var" => { parse_orphaned_vars(&mut word_gen, &mut vcd, &mut signal_map)?; parse_scopes(&mut word_gen, None, &mut vcd, &mut signal_map) } _ => { let (f, l )= (file!(), line!()); let msg = format!("Error near {f}:{l}.\ Expected $scope or $var, found {word} at {cursor:?}"); Err(msg) } }?; parse_events(&mut word_gen, &mut vcd, &mut signal_map)?; dbg!(&vcd.cursor); Ok(vcd) } #[cfg(test)] mod tests { use super::*; use crate::test; use std::fs::File; #[test] fn headers() { // TODO: eventually, once all dates pass, merge the following // two loops // testing dates for file in test::good_date_files { let metadata = parse_metadata( &mut WordReader::new( File::open(file) .unwrap() ) ); assert!(metadata.is_ok()); assert!(metadata.unwrap().date.is_some()); } for file in test::files { let metadata = parse_metadata( &mut WordReader::new( File::open(file) .unwrap() ) ); assert!(metadata.is_ok()); let (scalar, timescale) = metadata.unwrap().timescale; assert!(scalar.is_some()); } } #[test] fn scopes() { // see if we can parse all signal trees successfully for file_name in test::files { let file = File::open(file_name).unwrap(); let vcd = parse_vcd(file); if !vcd.is_ok() { dbg!(file_name); vcd.unwrap(); } // assert!(vcd.is_ok()); } } }