Compare commits

..

No commits in common. "main" and "backtrace" have entirely different histories.

58 changed files with 1050 additions and 2532 deletions

View file

@ -1,5 +1,5 @@
[package]
name = "fastwave_backend"
name = "fastwave"
version = "0.1.0"
edition = "2021"
@ -10,7 +10,7 @@ debug = 1
[dependencies]
num = "0.4"
clap = { version = "4.4.6", features = ["derive"] }
clap = { version = "3.1.8", features = ["derive"] }
chrono = "0.4"
# TODO : remove itertools once date parser is reworked.
itertools = "0.11"
itertools = "0.10.3"
backtrace = "0.3"

View file

@ -1,2 +0,0 @@
This codebase is also licensed to Yehowshua Immanuel to use
in any manner Yehowshua Immanuel sees fit.

115
README.md
View file

@ -1,131 +1,48 @@
Copyright(2023) - Yehowshua Immanuel
# Vision
Imagine being able to visualize a CPU pipeline diagram by merely loading a simulation waveform dump, sprinkling in a bit of code, and dragging and dropping some diagram blocks into the visualizer. This project aims to offer such an experience.
Since this project is written in Rust, it should also be able to run in the browser via web-assembly.
# Status
As of January 2024, work on the Fastwave Backend is stalled. It has been a fun journey watching Fastwave enable the first iterations of the [surfer waveform viewer](https://surfer-project.org). Now surfer uses an even better backend called [Wellen](https://github.com/ekiwi/wellen?tab=readme-ov-file). Go check it out! I hear it's really good. Perhaps I will soon archive the Fastwave Backend.
Browser demo: https://app.surfer-project.org/
Screenshot of surfer frontend below:
<img width="1609" alt="image" src="https://github.com/ThePerfectComputer/FastWaveBackend/assets/103011002/63deffc0-98b0-405f-b093-74d10b422b01">
Copyright - Yehowshua Immanuel
# A High performance, VCD Parser written in Rust
I hope for a GUI that eventually looks like the following...
![](assets/FastWaveMockup.png)
# Current Features
- Robust Error Handling
FastWave currently offers highly robust error handling(at least on the sample
VCD files in this repository) which GTKWave doesn't have. For
example, selecting the ``UTILIZATON_ENABLED`` signal after opening
[test2x2_regex22_string1.vcd](./test-vcd-files/xilinx_isim/test2x2_regex22_string1.vcd)
(one of the sample xilinx vcd test files) in GtkWave, will crash GtkWave since
this signal is malformed. FastWave on the otherhand simply notes that the
signal is malformed.
# Performance
## Methods
I have been testing performance on a 3.04GB VCD file that can be found
[here](https://drive.google.com/file/d/1pfm2qo2l8fGTHHJ8TLrg1vSGaV_TUbp2/view?usp=sharing).
For getting the GtkWave results, I fired up GtkWave, clicked on
``File``->``Open New Window``, and selected the VCD file linked to above.
I started my stopwatch as soon as I pressed enter to beging loading the VCD
file, and stopped my stopwatch once the GtkWave titlebar reached 100%.
To get the memory consumption, I opened Activity Monitor on Mac, and recorded
the GtkWave memory usage before and after loading the large VCD file, and
took the difference.
I noticed that when running FastWave in the VsCode terminal as opposed
to the MacOS system terminal or the Lapce terminal, FastWave is notably
slower.
## Results
LZ4 should really improve memory usage once I add it. Note that GTKWave uses LZ4 on the fly.
| Software | Time(s) | Memory(MB) |
|----------|---------|------------|
| FastWave | ~27.30 | 1100+ |
| GtkWave | ~30 | 89.8 |
## Current Features
- pretty fast, parses 3.04 GB VCD file in ~67s on M1 Macbook Air with
respect to 50s with GTKWave on the same device. FastWave currently
offers highly robust error handling which GTKWave doesn't have.
# Current Limitations
Unable to handle VCD files that have signals with more than
2^32 - 1 = 4,294,967,295 deltas/changes.
# Running
## Running
This repository comes with several smaller VCD files emitted from
various EDA tools. If you want a larger VCD file, grab one from
[here](https://drive.google.com/file/d/1pfm2qo2l8fGTHHJ8TLrg1vSGaV_TUbp2/view?usp=sharing).
Here are some examples you can run:
The first build of the program may take some time.
1. ``cargo run --release --example parse_vcd tests/vcd-files/aldec/SPI_Write.vcd``
2. ``cargo run --release --example vcd``
``cargo run --release test-vcd-files/aldec/SPI_Write.vcd``
You can run all the tests with ``cargo test``
# Testing on Bad Files
You may wish to test the parser on a malformed VCD just to make
sure that the parser gives useful/sane errors.
Here's a command to test on a malformed VCD:
``cargo run --release --example parse_vcd tests/vcd-files/VCD_file_with_errors.vcd``
# TODO
## Features and Other
- [ ] add documenting comments
- [ ] make signal query private until later?
- [ ] add signal query code to example once interface is finalized
- [ ] change crate name to vcd_fast_parse
- [ ] perhaps we should be looking up signal values on the VCD class
- [ ] perhaps we should be returning signal trees from the VCD class
- [ ] add lz4 compression support and compare memory perf before and after
- [ ] may need to refactor with allow for get_mut for dynamic
compression-decompression for multiple signal structs
at once to allow for multi-threading
- [ ] test against large waveforms from the
[verilog-vcd-parser](https://github.com/ben-marshall/verilog-vcd-parser)
tool
- [ ] (a bit of work) consolidate error messages in validation phase
- [ ] once the access patterns of the GUI frontend are well understood,
create specific functions and restrict as many types to private
as possible
## Features
- [ ] move parse_orphaned_vars to scopes.rs
- [ ] Print out git commit or release number.
- [ ] do a read through all the code - look for uneeded code
- [ ] Move part of the performance section to another markdown file.
- [ ] Should be able to load waveform whilst viewing it live.
- could be quite challenging to implement for various reasons
- [ ] Take a look at GTKWave parser to compare efficiency.
- [ ] re-order all signal timelines as binary balanced trees with respect to timestamps
- support multithreaded re-ordering
## Repairs
- [ ] replace str bracket indices with get(slice)
- [ ] make a custom date parser for possibly up to 18 different versions(that is, for each possible tool).
- [ ] Consolidate error messages and add cursors throughout.
- [ ] Add file and line to the enum errors.
- [ ] Fix warnings especially usage and restriction warnings once I'm
able to successfully parse all sample VCDs.
## Code Consistency
- [ ] Change error messages to line and filenames. Go through all calls to unwrap.
- [ ] search for any unwraps or any direct vectors indexing
- [ ] Handle TODOs
- [ ] Remove debug code/comments.
## Documentation
- [ ] Document indexing structure with diagram and possibly include the rational
- [ ] Change error messages to line and filenames. Go through all calls to ``format!`` whilst also keeping performance in mind.
## Marketing
- [ ] Send survey to community
- [ ] Send survey to community channel.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.1 MiB

View file

@ -1,33 +0,0 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use clap::Parser;
use std::fs::File;
use fastwave_backend::parse_vcd;
#[derive(Parser)]
struct Cli {
/// The path to the file to read
path: std::path::PathBuf,
}
fn main() -> std::io::Result<()> {
let args = Cli::parse();
use std::time::Instant;
let now = Instant::now();
let file = File::open(&args.path)?;
parse_vcd(file).unwrap();
let elapsed = now.elapsed();
println!(
"Parsed VCD file {} : {:.2?}",
&args.path.as_os_str().to_str().unwrap(),
elapsed
);
Ok(())
}

View file

@ -1,81 +0,0 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use std::fs::File;
use fastwave_backend::{parse_vcd, ScopeIdx, SignalIdx, VCD};
fn indented_print(indent: u8, name: &String) {
for _ in 0..indent {
print!(" |");
}
print!("---");
println!("{name}");
}
// TODO: refactor into more general visitor pattern that takes a
// function as an argument.
fn visit_all_scopes(vcd: &VCD) {
fn visit_all_scope_children(root_idx: ScopeIdx, vcd: &VCD, indent: u8) {
if vcd.child_scopes_by_idx(root_idx).is_empty() {
} else {
for child_scope_idx in vcd.child_scopes_by_idx(root_idx) {
indented_print(indent, vcd.scope_name_by_idx(child_scope_idx));
for signal_idx in vcd.get_children_signal_idxs(child_scope_idx) {
let signal = vcd.signal_from_signal_idx(signal_idx);
let SignalIdx(idx) = signal_idx;
indented_print(indent + 1, &format!("{},{}", signal.name(), idx));
}
visit_all_scope_children(child_scope_idx, vcd, indent + 1);
}
}
}
for root_scope_idx in vcd.root_scopes_by_idx() {
indented_print(0, vcd.scope_name_by_idx(root_scope_idx));
visit_all_scope_children(root_scope_idx, vcd, 1u8);
}
}
fn main() -> std::io::Result<()> {
use std::time::Instant;
// we start by printing out the entire signal tree of
// a parsed VCD
let now = Instant::now();
let file_path = "tests/vcd-files/icarus/CPU.vcd";
let file = File::open(file_path)?;
let vcd = parse_vcd(file).unwrap();
let elapsed = now.elapsed();
println!("Parsed VCD file {} : {:.2?}", file_path, elapsed);
println!("Printing Scopes");
visit_all_scopes(&vcd);
println!("Done Printing Scopes");
println!();
// we then parse another VCD, print its signal tree and
// query some values on its timeline
let now = Instant::now();
let file_path = "tests/vcd-files/amaranth/up_counter.vcd";
let file = File::open(file_path)?;
let vcd = parse_vcd(file).unwrap();
let elapsed = now.elapsed();
println!("Parsed VCD file {} : {:.2?}", file_path, elapsed);
println!("Printing Scopes");
visit_all_scopes(&vcd);
println!("Done Printing Scopes");
let state_signal = vcd.signal_from_signal_idx(SignalIdx(4));
let name = state_signal.name();
let timestamps = vec![31499_000u32, 31500_000u32, 57760_000u32];
for timestamp in timestamps {
let time = num::BigUint::from(timestamp);
let val = state_signal.query_string_val_on_tmln(&time, &vcd).unwrap();
println!("Signal `{name}` has value `{val}` at time `{time}`");
}
Ok(())
}

View file

@ -1,12 +0,0 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
mod vcd;
pub use vcd::parse::parse_vcd;
pub use vcd::signal::{Signal, SignalType, SignalValue, SignalErrors};
pub use vcd::types::{Metadata, Timescale, Version};
pub use vcd::types::{ScopeIdx, SignalIdx, VCD};
pub use num::BigUint;

39
src/main.rs Normal file
View file

@ -0,0 +1,39 @@
use std::{fs::File};
use clap::Parser;
pub mod test;
pub mod vcd;
use vcd::parse_vcd;
use std::mem::size_of_val;
#[derive(Parser)]
struct Cli {
/// The path to the file to read
#[clap(parse(from_os_str))]
path: std::path::PathBuf}
fn main() -> std::io::Result<()> {
let args = Cli::parse();
use std::time::Instant;
let now = Instant::now();
let file = File::open(&args.path)?;
let vcd = parse_vcd(file).unwrap();
let elapsed = now.elapsed();
println!("Elapsed: {:.2?}", elapsed);
vcd.print_longest_signal();
dbg!(size_of_val(&*vcd.timeline));
// unsafe {
// let sz = size_of_val(&*vcd.timeline);
// }
// println!("printing signal tree");
// vcd.print_scopes();
Ok(())
}

2
src/test.rs Normal file
View file

@ -0,0 +1,2 @@
mod files;
pub use files::*;

71
src/test/files.rs Normal file
View file

@ -0,0 +1,71 @@
// TODO: we should eventually be able to only test on just
// the files const
pub const FILES : [&str; 30] = [
"./test-vcd-files/aldec/SPI_Write.vcd",
"./test-vcd-files/ghdl/alu.vcd",
"./test-vcd-files/ghdl/idea.vcd",
"./test-vcd-files/ghdl/pcpu.vcd",
"./test-vcd-files/gtkwave-analyzer/perm_current.vcd",
"./test-vcd-files/icarus/CPU.vcd",
"./test-vcd-files/icarus/rv32_soc_TB.vcd",
"./test-vcd-files/icarus/test1.vcd",
"./test-vcd-files/model-sim/CPU_Design.msim.vcd",
"./test-vcd-files/model-sim/clkdiv2n_tb.vcd",
"./test-vcd-files/my-hdl/Simple_Memory.vcd",
"./test-vcd-files/my-hdl/sigmoid_tb.vcd",
"./test-vcd-files/my-hdl/top.vcd",
"./test-vcd-files/ncsim/ffdiv_32bit_tb.vcd",
"./test-vcd-files/quartus/mipsHardware.vcd",
"./test-vcd-files/quartus/wave_registradores.vcd",
"./test-vcd-files/questa-sim/dump.vcd",
"./test-vcd-files/questa-sim/test.vcd",
"./test-vcd-files/riviera-pro/dump.vcd",
"./test-vcd-files/systemc/waveform.vcd",
"./test-vcd-files/treadle/GCD.vcd",
"./test-vcd-files/vcs/Apb_slave_uvm_new.vcd",
"./test-vcd-files/vcs/datapath_log.vcd",
"./test-vcd-files/vcs/processor.vcd",
"./test-vcd-files/verilator/swerv1.vcd",
"./test-vcd-files/verilator/vlt_dump.vcd",
"./test-vcd-files/vivado/iladata.vcd",
"./test-vcd-files/xilinx_isim/test.vcd",
"./test-vcd-files/xilinx_isim/test1.vcd",
// TODO : add signal ignore list to handle bitwidth mismatches
"./test-vcd-files/xilinx_isim/test2x2_regex22_string1.vcd"
];
pub const GOOD_DATE_FILES : [&str; 24] = [
"./test-vcd-files/aldec/SPI_Write.vcd",
"./test-vcd-files/ghdl/alu.vcd",
"./test-vcd-files/ghdl/idea.vcd",
"./test-vcd-files/ghdl/pcpu.vcd",
"./test-vcd-files/gtkwave-analyzer/perm_current.vcd",
"./test-vcd-files/icarus/CPU.vcd",
"./test-vcd-files/icarus/rv32_soc_TB.vcd",
"./test-vcd-files/icarus/test1.vcd",
"./test-vcd-files/model-sim/CPU_Design.msim.vcd",
"./test-vcd-files/model-sim/clkdiv2n_tb.vcd",
"./test-vcd-files/my-hdl/Simple_Memory.vcd",
"./test-vcd-files/my-hdl/sigmoid_tb.vcd",
"./test-vcd-files/my-hdl/top.vcd",
"./test-vcd-files/questa-sim/dump.vcd",
"./test-vcd-files/questa-sim/test.vcd",
"./test-vcd-files/riviera-pro/dump.vcd",
"./test-vcd-files/vcs/Apb_slave_uvm_new.vcd",
"./test-vcd-files/vcs/datapath_log.vcd",
"./test-vcd-files/vcs/processor.vcd",
"./test-vcd-files/verilator/swerv1.vcd",
"./test-vcd-files/verilator/vlt_dump.vcd",
"./test-vcd-files/xilinx_isim/test.vcd",
"./test-vcd-files/xilinx_isim/test1.vcd",
"./test-vcd-files/xilinx_isim/test2x2_regex22_string1.vcd"
];
pub const BAD_DATE_FILES : [&str; 6] = [
"./test-vcd-files/ncsim/ffdiv_32bit_tb.vcd",
"./test-vcd-files/quartus/mipsHardware.vcd",
"./test-vcd-files/quartus/wave_registradores.vcd",
"./test-vcd-files/systemc/waveform.vcd",
"./test-vcd-files/treadle/GCD.vcd",
"./test-vcd-files/vivado/iladata.vcd",
];

View file

@ -1,10 +1,8 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
pub(crate) mod parse;
mod reader;
pub(crate) mod signal;
pub(crate) mod types;
mod utilities;
pub use reader::*;
mod types;
pub use types::*;
mod parse;
pub use parse::*;

View file

@ -1,35 +1,99 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use std::{fs::File};
use std::collections::HashMap;
use num::BigInt;
use super::*;
mod combinator_atoms;
mod events;
mod metadata;
mod scopes;
use combinator_atoms::*;
mod types;
use types::*;
pub fn parse_vcd(file: impl std::io::Read) -> Result<super::types::VCD, String> {
let mut word_gen = super::reader::WordReader::new(file);
mod metadata;
use metadata::*;
let header = metadata::parse_metadata(&mut word_gen)?;
mod scopes;
use scopes::*;
mod events;
use events::*;
pub fn parse_vcd(file : File) -> Result<VCD, String> {
let mut word_gen = WordReader::new(file);
let header = parse_metadata(&mut word_gen)?;
// later, we'll need to map parsed ascii symbols to their
// respective signal indexes
let mut signal_map = std::collections::HashMap::new();
// after we parse metadata, we form the VCD object
let mut vcd = super::types::VCD {
let mut vcd = VCD{
metadata : header,
tmstmps_encoded_as_u8s: vec![],
timeline : vec![],
timeline_markers : vec![],
all_signals : vec![],
all_scopes : vec![],
root_scopes: vec![],
largest_timestamp: None,
scope_roots : vec![],
};
scopes::parse_scopes(&mut word_gen, &mut vcd, &mut signal_map)?;
events::parse_events(&mut word_gen, &mut vcd, &mut signal_map)?;
parse_scopes(&mut word_gen, &mut vcd, &mut signal_map)?;
parse_events(&mut word_gen, &mut vcd, &mut signal_map)?;
Ok(vcd)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test;
use std::fs::File;
#[test]
fn headers() {
// TODO: eventually, once all dates pass, merge the following
// two loops
// testing dates
for file in test::GOOD_DATE_FILES {
let metadata = parse_metadata(
&mut WordReader::new(
File::open(file)
.unwrap()
)
);
assert!(metadata.is_ok());
assert!(metadata.unwrap().date.is_some());
}
for file in test::FILES {
let metadata = parse_metadata(
&mut WordReader::new(
File::open(file)
.unwrap()
)
);
assert!(metadata.is_ok());
let (scalar, _timescale) = metadata.unwrap().timescale;
assert!(scalar.is_some());
}
}
#[test]
fn scopes() {
// see if we can parse all signal trees successfully
for file_name in test::FILES {
let file = File::open(file_name).unwrap();
let vcd = parse_vcd(file);
if !vcd.is_ok() {
dbg!(file_name);
vcd.unwrap();
}
// assert!(vcd.is_ok());
}
}
}

View file

@ -1,49 +1,53 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use super::super::reader::{next_word, WordReader};
use super::types::ParseResult;
use super::reader::WordReader;
pub(super) fn digit(chr : u8) -> bool {
let zero = b'0';
let nine = b'9';
let zero = b'0' as u8;
let nine = b'9' as u8;
(chr >= zero) && (nine >= chr)
let between_zero_and_nine = (chr >= zero) && (nine >= chr);
return between_zero_and_nine
}
pub(super) fn take_until(word: &str, pattern: u8) -> ParseResult<'_> {
pub(super) fn take_until<'a>(word : &'a str, pattern : u8) -> ParseResult<'a> {
let mut new_start = 0;
for chr in word.as_bytes() {
if *chr == pattern {
break;
} else {
break
}
else {
new_start += 1;
}
}
return
ParseResult{
matched : &word[0..new_start],
residual: &word[new_start..],
}
residual : &word[new_start..]
};
}
pub(super) fn take_while(word: &str, cond: fn(u8) -> bool) -> ParseResult<'_> {
pub(super) fn take_while<'a>(word : &'a str, cond : fn(u8) -> bool) -> ParseResult<'a> {
let mut new_start = 0;
for chr in word.as_bytes() {
if cond(*chr) {
new_start += 1;
} else {
break;
}
else {
break
}
}
return
ParseResult{
matched : &word[0..new_start],
residual: &word[new_start..],
}
residual : &word[new_start..]
};
}
pub(super) fn tag<'a>(word : &'a str, pattern : &'a str) -> ParseResult<'a> {
@ -55,29 +59,30 @@ pub(super) fn tag<'a>(word: &'a str, pattern: &'a str) -> ParseResult<'a> {
let mut res = true;
for (c_lhs, c_rhs) in iter {
res = res && (c_lhs == c_rhs);
if !res {
break;
}
if !res {break}
new_start += 1;
}
return
ParseResult{
matched : &word[0..new_start],
residual: &word[new_start..],
}
residual : &word[new_start..]
};
}
pub(super) fn ident<R: std::io::Read>(
word_reader: &mut WordReader<R>,
pub(super) fn ident(
word_reader : &mut WordReader,
keyword : &str,
) -> Result<(), String> {
// let keyword = "module";
let (word, cursor) = next_word!(word_reader)?;
let (word, cursor) = word_reader.next_word()?;
if word == keyword {
Ok(())
} else {
return Ok(())
}
else {
let err = format!("found keyword `{word}` but expected `{keyword}` on {cursor:?}");
Err(err)
return Err(err)
}
}

View file

@ -1,152 +1,177 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
//! part of the vcd parser that handles parsing the signal tree and
//! building the resulting signal tree
use super::*;
use num::BigUint;
use std::collections::HashMap;
#[derive(Debug)]
pub(super) enum BinaryParserErrTypes {XValue, ZValue, UValue, OtherValue(char), TooLong}
use super::super::reader::{next_word, Cursor, Line, Word, WordReader};
use super::super::signal::{LsbIdxOfTmstmpValOnTmln, SignalEnum};
use super::super::types::{SignalIdx, VCD};
use super::super::utilities::{binary_str_to_vec_u8, BinaryParserErrTypes};
// We build a quick and not so dirty bit string parser.
fn base2_str_to_byte(word : &[u8]) -> Result<u8, BinaryParserErrTypes> {
let mut val = 0u8;
pub(super) fn parse_events<R: std::io::Read>(
word_reader: &mut WordReader<R>,
vcd: &mut VCD,
signal_map: &mut HashMap<String, SignalIdx>,
// shouldn't have more than 8 chars in str
let len = word.len();
if len > 8 {
return Err(BinaryParserErrTypes::TooLong)
}
let bit_lut = [
0b0000_0001u8,
0b0000_0010u8,
0b0000_0100u8,
0b0000_1000u8,
0b0001_0000u8,
0b0010_0000u8,
0b0100_0000u8,
0b1000_0000u8
];
for (idx, chr) in word.iter().rev().enumerate() {
match chr {
b'1' => {val = bit_lut[idx] | val}
b'0' => {}
b'x' | b'X' => {return Err(BinaryParserErrTypes::XValue)}
b'z' | b'Z' => {return Err(BinaryParserErrTypes::ZValue)}
b'u' | b'U' => {return Err(BinaryParserErrTypes::UValue)}
_ => {return Err(BinaryParserErrTypes::OtherValue(*chr as char))}
}
}
Ok(val)
}
fn binary_str_to_vec_u8(binary_str : &str) -> Result<Vec<u8>, BinaryParserErrTypes> {
let mut vec_u8 : Vec<u8> = Vec::new();
let binary_str_as_bytes = binary_str.as_bytes();
let mut tail_idx = binary_str_as_bytes.len();
// clamp head if provided binary str is less than 8 long
let mut head_idx =
if tail_idx >= 8
{binary_str_as_bytes.len() - 8}
else
{0};
while tail_idx > 0 {
let curr_b_val = &binary_str_as_bytes[head_idx..tail_idx];
let val_u8 = base2_str_to_byte(curr_b_val)?;
vec_u8.push(val_u8);
if head_idx < 8 {
head_idx = 0
}
else {
head_idx = head_idx - 8;
}
if tail_idx < 8 {
tail_idx = 0
}
else {
tail_idx = tail_idx - 8;
}
}
Ok(vec_u8)
}
pub(super) fn parse_events<'a>(
word_reader : &mut WordReader,
vcd : &'a mut VCD,
signal_map : &mut HashMap<String, SignalIdx>
) -> Result<(), String> {
let mut curr_tmstmp_lsb_idx = 0u32;
let mut curr_tmstmp_len_u8 = 0u8;
loop {
let next_word = word_reader.next_word();
// The following is the only case where eof is not an error.
// If we've reached the end of the file, then there is obviously
// nothing left to do...
if next_word.is_none() {
break;
};
if next_word.is_err() {break};
let (word, cursor) = next_word.unwrap();
let Cursor(Line(_), Word(word_in_line_idx)) = cursor;
// we only want to match on the first word in a line
if word_in_line_idx != 1 {
continue;
}
if word_in_line_idx != 1 {continue}
match &word[0..1] {
"$" => {}
"#" => {
let value = &word[1..];
let (f, l )= (file!(), line!());
let value_biguint = BigUint::parse_bytes(value.as_bytes(), 10)
.ok_or(())
.map_err(|_| {
format!(
"Error near {f}:{l}. Failed to parse {value} as BigInt at {cursor:?}"
)
})?;
let mut value = value_biguint.to_bytes_le();
let value = BigInt::parse_bytes(value.as_bytes(), 10).ok_or(
format!("Error near {f}:{l}. Failed to parse {value} as BigInt at {cursor:?}").as_str())?;
let (_, mut value) = value.to_bytes_le();
// TODO : u32 helps with less memory, but should ideally likely be
// configurable.
curr_tmstmp_len_u8 = u8::try_from(value.len()).map_err(|_| {
format!(
"Error near {}:{}. Failed to convert from usize to u8.",
file!(),
line!()
)
})?;
curr_tmstmp_lsb_idx =
u32::try_from(vcd.tmstmps_encoded_as_u8s.len()).map_err(|_| {
format!(
"Error near {}:{}. Failed to convert from usize to u32.",
file!(),
line!()
)
})?;
vcd.tmstmps_encoded_as_u8s.append(&mut value);
vcd.largest_timestamp = Some(value_biguint);
let (f, l )= (file!(), line!());
let start_idx = u32::try_from(vcd.timeline.len()).map_err(
|_| format!("Error near {f}:{l}. Failed to convert from usize to u32."))?;
vcd.timeline_markers.push(StartIdx(start_idx));
vcd.timeline.append(&mut value);
}
// handle the case of an n bit signal whose value must be parsed
"b" => {
let binary_value = &word[1..];
let observed_num_bits = u32::try_from(binary_value.len()).map_err(|_| {
format!(
"Error near {}:{}, {cursor:?}. \
Found signal with more than 2^32 - 1 bits.",
file!(),
line!()
)
})?;
let observed_num_bits = binary_value.len();
let mut value_u8 : Vec<u8> = Vec::new();
let mut value_string = String::new();
let mut store_as_string = false;
// If we encounter other values than 0 or 1, we can recover from
// If we encounter x or z in a value, we can recover from
// the error and store the value as a string.
// Or else, we propagate up other errors.
// Or else, we we propagate up other errors.
match binary_str_to_vec_u8(binary_value) {
Ok(result) => {
value_u8 = result;
}
Err(
BinaryParserErrTypes::XValue
| BinaryParserErrTypes::ZValue
| BinaryParserErrTypes::UValue
| BinaryParserErrTypes::WValue
| BinaryParserErrTypes::HValue
| BinaryParserErrTypes::DashValue
| BinaryParserErrTypes::LValue,
) => {
Ok(result) => {value_u8 = result;}
Err(BinaryParserErrTypes::XValue |
BinaryParserErrTypes::ZValue |
BinaryParserErrTypes::UValue
) =>
{
store_as_string = true;
// Turn to lower case for consistency
value_string = binary_value.to_ascii_lowercase();
value_string = binary_value.to_string();
}
Err(e) => {
let (f, l )= (file!(), line!());
Err(e).map_err(|e| {
format!("Error near {f}:{l}. Error {e:?} at {cursor:?}.")
})?;
Err(e).map_err(
|e| format!("Error near {f}:{l}. Error {e:?} at {cursor:?}."))?;
}
}
// this word should be the signal alias
let (word, cursor) = next_word!(word_reader)?;
let (word, cursor) = word_reader.next_word().unwrap();
// lookup signal idx
let signal_idx = signal_map.get(word).ok_or(()).map_err(|_| {
format!(
"Error near {}:{}. Failed to lookup signal {word} at {cursor:?}",
file!(),
line!()
)
})?;
let signal = vcd.dealiasing_signal_idx_to_signal_lookup_mut(signal_idx)?;
let (f, l )= (file!(), line!());
let SignalIdx(ref signal_idx) = signal_map.get(word).ok_or(
format!("Error near {f}:{l}. Failed to lookup signal {word} at {cursor:?}"))?;
// account for fact that signal idx could be an alias, so there
// could be one step of indirection
let signal_idx =
{
let signal = vcd.all_signals.get(*signal_idx).unwrap();
match signal {
SignalEnum::Data {
name,
signal_type,
ref mut signal_error,
num_bits,
num_bytes,
nums_encoded_as_fixed_width_le_u8,
string_vals,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
byte_len_of_string_tmstmp_vals_on_tmln,
..
} => {
// we've already identified in a prior loop iteration that the signal has
// an error
if signal_error.is_some() {
continue;
Signal::Data {..} => {*signal_idx}
Signal::Alias {signal_alias, ..} => {
let SignalIdx(ref signal_idx) = signal_alias;
signal_idx.clone()
}
}
};
// after handling potential indirection, go ahead and update the timeline
// of the signal signal_idx references
let signal = vcd.all_signals.get_mut(signal_idx).unwrap();
match signal {
Signal::Data {name, sig_type, ref mut signal_error, num_bits,
u8_timeline, u8_timeline_markers, string_timeline,
string_timeline_markers, ..} => {
if signal_error.is_some() {continue;}
// Get the observed number of bits for the value parsed earlier
// and verify that it is not greater than the numbits declared
@ -158,7 +183,7 @@ pub(super) fn parse_events<R: std::io::Read>(
let (f, l) = (file!(), line!());
let msg = format!("\
Error near {f}:{l}. The bitwidth for signal {name} \
of signal_type {signal_type:?} is expected to be `{num_bits}` not \
of sig_type {sig_type:?} is expected to be `{num_bits}` not \
`{observed_num_bits}`. \
This error occurred while parsing the vcd file at \
{cursor:?}");
@ -168,57 +193,57 @@ pub(super) fn parse_events<R: std::io::Read>(
}
None => {
let (f, l) = (file!(), line!());
let msg = format!(
"\
let msg = format!("\
Error near {f}:{l}. The bitwidth for signal {name} \
must be specified for a signal of type {signal_type:?}. \
must be specified for a signal of type {sig_type:?}. \
This error occurred while parsing the vcd file at \
{cursor:?}"
);
{cursor:?}");
Err(msg)?;
}
};
if store_as_string {
lsb_indxs_of_string_tmstmp_vals_on_tmln
.push(LsbIdxOfTmstmpValOnTmln(curr_tmstmp_lsb_idx));
byte_len_of_string_tmstmp_vals_on_tmln.push(curr_tmstmp_len_u8);
string_vals.push(value_string);
Ok(())
} else {
// timestamp stuff
lsb_indxs_of_num_tmstmp_vals_on_tmln
.push(LsbIdxOfTmstmpValOnTmln(curr_tmstmp_lsb_idx));
byte_len_of_num_tmstmp_vals_on_tmln.push(curr_tmstmp_len_u8);
let (f, l )= (file!(), line!());
let timeline_idx = u32::try_from(vcd.timeline.len()).map_err(
|_| format!("Error near {f}:{l}. Failed to convert from usize to u32."))?;
let timeline_idx = TimelineIdx(timeline_idx);
if store_as_string {
string_timeline_markers.push(timeline_idx);
string_timeline.push(value_string);
Ok(())
}
else {
u8_timeline_markers.push(timeline_idx);
let mut curr_num_bytes = value_u8.len();
u8_timeline.append(&mut value_u8);
// value stuff
// we may need to zero extend values
// so that we end up storing all values
// of a particular signal in a consistent
// amount of bytes
let bytes_required = num_bytes.ok_or_else(|| {
format!("Error near {}:{}. num_bytes empty.", file!(), line!())
})?;
let mut curr_num_bytes =
u16::try_from(value_u8.len()).map_err(|_| {
format!(
"Error near {}:{}. \
Found signal {name} with with value change of greater \
than 2^32 - 1 bits on {cursor:?}.",
file!(),
line!()
)
})?;
let num_bits = num_bits.unwrap();
let bytes_required = (num_bits / 8) +
if (num_bits % 8) > 0 {1} else {0};
nums_encoded_as_fixed_width_le_u8.append(&mut value_u8);
while curr_num_bytes < bytes_required {
nums_encoded_as_fixed_width_le_u8.push(0u8);
// useful for debugging
// let err = format!("Error at {cursor:?}.\
// num_bits = {num_bits}, \
// observed_bits = {observed_num_bits}, \
// curr_num_bytes = {curr_num_bytes}, \
// bytes_required = {bytes_required} \
// for signal {name}");
// Err(err)?;
u8_timeline.push(0u8);
curr_num_bytes += 1;
}
Ok(())
}
}
SignalEnum::Alias { .. } => {
Signal::Alias {..} => {
let (f, l )= (file!(), line!());
let msg = format!(
"Error near {f}:{l}, a signal alias should not point to a signal alias.\n\
@ -232,32 +257,34 @@ pub(super) fn parse_events<R: std::io::Read>(
"0" => {
// lookup signal idx
let hash = &word[1..];
let signal_idx = signal_map.get(hash).ok_or(()).map_err(|_| {
format!(
"Error near {}:{}. Failed to lookup signal {hash} at {cursor:?}",
file!(),
line!()
)
})?;
let signal = vcd.dealiasing_signal_idx_to_signal_lookup_mut(signal_idx)?;
let (f, l )= (file!(), line!());
let SignalIdx(ref signal_idx) = signal_map.get(hash).ok_or(
format!("Error near {f}:{l}. Failed to lookup signal {hash} at {cursor:?}"))?;
// account for fact that signal idx could be an alias, so there
// could be one step of indirection
let signal_idx =
{
let signal = vcd.all_signals.get(*signal_idx).unwrap();
match signal {
SignalEnum::Data {
name,
signal_type,
ref mut signal_error,
num_bits,
num_bytes,
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
..
} => {
// if this is a bad signal, go ahead and skip it
if signal_error.is_some() {
continue;
Signal::Data {..} => {*signal_idx}
Signal::Alias {signal_alias, ..} => {
let SignalIdx(ref signal_idx) = signal_alias;
signal_idx.clone()
}
}
};
// after handling potential indirection, go ahead and update the timeline
// of the signal signal_idx references
let signal = vcd.all_signals.get_mut(signal_idx).unwrap();
match signal {
Signal::Data {name, sig_type, ref mut signal_error, num_bits,
u8_timeline, u8_timeline_markers, ..} => {
// if this is a bad signal, go ahead and skip it
if signal_error.is_some() {continue;}
// Get bitwidth and verify that it is 1.
// Also account for the error case of a bitwidth of `None`
@ -265,52 +292,37 @@ pub(super) fn parse_events<R: std::io::Read>(
Some(ref num_bits) => {
if *num_bits != 1 {
let (f, l) = (file!(), line!());
let msg = format!(
"\
let msg = format!("\
Error near {f}:{l}. The bitwidth for signal {name} \
of signal_type {signal_type:?} is expected to be `1` not \
of sig_type {sig_type:?} is expected to be `1` not \
`{num_bits}`. \
This error occurred while parsing the vcd file at \
{cursor:?}"
);
{cursor:?}");
*signal_error = Some(msg);
continue;
}
}
None => {
let (f, l) = (file!(), line!());
let msg = format!(
"\
let msg = format!("\
Error near {f}:{l}. The bitwidth for signal {name} \
must be specified for a signal of type {signal_type:?}. \
must be specified for a signal of type {sig_type:?}. \
This error occurred while parsing the vcd file at \
{cursor:?}"
);
{cursor:?}");
Err(msg)?;
}
};
// timestamp stuff
lsb_indxs_of_num_tmstmp_vals_on_tmln
.push(LsbIdxOfTmstmpValOnTmln(curr_tmstmp_lsb_idx));
byte_len_of_num_tmstmp_vals_on_tmln.push(curr_tmstmp_len_u8);
// value stuff
// we may need to zero extend values
// so that we end up storing all values
// of a particular signal in a consistent
// amount of bytes
let bytes_required = num_bytes.ok_or_else(|| {
format!("Error near {}:{}. num_bytes empty.", file!(), line!())
})?;
nums_encoded_as_fixed_width_le_u8.push(0u8);
let mut curr_num_bytes = 1;
while curr_num_bytes < bytes_required {
nums_encoded_as_fixed_width_le_u8.push(0u8);
curr_num_bytes += 1;
}
let (f, l )= (file!(), line!());
let timeline_idx = u32::try_from(vcd.timeline.len()).map_err(
|_| format!("Error near {f}:{l}. Failed to convert from usize to u32."))?;
let timeline_idx = TimelineIdx(timeline_idx);
u8_timeline_markers.push(timeline_idx);
u8_timeline.push(0u8);
Ok(())
}
SignalEnum::Alias { .. } => {
Signal::Alias {..} => {
let (f, l )= (file!(), line!());
let msg = format!(
"Error near {f}:{l}, a signal alias should not point to a signal alias.\n\
@ -323,32 +335,34 @@ pub(super) fn parse_events<R: std::io::Read>(
"1" => {
// lokup signal idx
let hash = &word[1..];
let signal_idx = signal_map.get(hash).ok_or(()).map_err(|_| {
format!(
"Error near {}:{}. Failed to lookup signal {hash} at {cursor:?}",
file!(),
line!()
)
})?;
let signal = vcd.dealiasing_signal_idx_to_signal_lookup_mut(signal_idx)?;
let (f, l )= (file!(), line!());
let SignalIdx(ref signal_idx) = signal_map.get(hash).ok_or(
format!("Error near {f}:{l}. Failed to lookup signal {hash} at {cursor:?}"))?;
// account for fact that signal idx could be an alias, so there
// could be one step of indirection
let signal_idx =
{
let signal = vcd.all_signals.get(*signal_idx).unwrap();
match signal {
SignalEnum::Data {
name,
signal_type,
ref mut signal_error,
num_bits,
num_bytes,
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
..
} => {
// if this is a bad signal, go ahead and skip it
if signal_error.is_some() {
continue;
Signal::Data {..} => {*signal_idx}
Signal::Alias {signal_alias, ..} => {
let SignalIdx(ref signal_idx) = signal_alias;
signal_idx.clone()
}
}
};
// after handling potential indirection, go ahead and update the timeline
// of the signal signal_idx references
let signal = vcd.all_signals.get_mut(signal_idx).unwrap();
match signal {
Signal::Data {name, sig_type, ref mut signal_error, num_bits,
u8_timeline, u8_timeline_markers, ..} => {
// if this is a bad signal, go ahead and skip it
if signal_error.is_some() {continue;}
// Get bitwidth and verify that it is 1.
// Also account for the error case of a bitwidth of `None`
@ -356,52 +370,37 @@ pub(super) fn parse_events<R: std::io::Read>(
Some(ref num_bits) => {
if *num_bits != 1 {
let (f, l) = (file!(), line!());
let msg = format!(
"\
let msg = format!("\
Error near {f}:{l}. The bitwidth for signal {name} \
of signal_type {signal_type:?} is expected to be `1` not \
of sig_type {sig_type:?} is expected to be `1` not \
`{num_bits}`. \
This error occurred while parsing the vcd file at \
{cursor:?}"
);
{cursor:?}");
*signal_error = Some(msg);
continue;
}
}
None => {
let (f, l) = (file!(), line!());
let msg = format!(
"\
let msg = format!("\
Error near {f}:{l}. The bitwidth for signal {name} \
must be specified for a signal of type {signal_type:?}. \
must be specified for a signal of type {sig_type:?}. \
This error occurred while parsing the vcd file at \
{cursor:?}"
);
{cursor:?}");
Err(msg)?;
}
};
// timestamp stuff
lsb_indxs_of_num_tmstmp_vals_on_tmln
.push(LsbIdxOfTmstmpValOnTmln(curr_tmstmp_lsb_idx));
byte_len_of_num_tmstmp_vals_on_tmln.push(curr_tmstmp_len_u8);
// value stuff
// we may need to zero extend values
// so that we end up storing all values
// of a particular signal in a consistent
// amount of bytes
let bytes_required = num_bytes.ok_or_else(|| {
format!("Error near {}:{}. num_bytes empty.", file!(), line!())
})?;
nums_encoded_as_fixed_width_le_u8.push(1u8);
let mut curr_num_bytes = 1;
while curr_num_bytes < bytes_required {
nums_encoded_as_fixed_width_le_u8.push(0u8);
curr_num_bytes += 1;
}
let (f, l )= (file!(), line!());
let timeline_idx = u32::try_from(vcd.timeline.len()).map_err(
|_| format!("Error near {f}:{l}. Failed to convert from usize to u32."))?;
let timeline_idx = TimelineIdx(timeline_idx);
u8_timeline_markers.push(timeline_idx);
u8_timeline.push(1u8);
Ok(())
}
SignalEnum::Alias { .. } => {
Signal::Alias {..} => {
let (f, l )= (file!(), line!());
let msg = format!(
"Error near {f}:{l}, a signal alias should not point to a signal alias.\n\
@ -410,38 +409,39 @@ pub(super) fn parse_events<R: std::io::Read>(
}
}?;
}
// other one bit cases
"x" | "X" | "z" | "Z" | "u" | "U" | "h" | "H" | "l" | "L" | "w" | "W" | "-" => {
// Select value and turn to lowercase for consistency
let val = word[0..1].to_ascii_lowercase();
"x" | "X" | "z" | "Z" | "u" | "U" => {
let val = word.to_string();
// lokup signal idx
let hash = &word[1..];
let signal_idx = signal_map.get(hash).ok_or(()).map_err(|_| {
format!(
"Error near {}:{}. Failed to lookup signal {hash} at {cursor:?}",
file!(),
line!()
)
})?;
let signal = vcd.dealiasing_signal_idx_to_signal_lookup_mut(signal_idx)?;
let (f, l )= (file!(), line!());
let SignalIdx(ref signal_idx) = signal_map.get(hash).ok_or(
format!("Error near {f}:{l}. Failed to lookup signal {hash} at {cursor:?}"))?;
// account for fact that signal idx could be an alias, so there
// could be one step of indirection
let signal_idx =
{
let signal = vcd.all_signals.get(*signal_idx).unwrap();
match signal {
SignalEnum::Data {
name,
signal_type,
ref mut signal_error,
num_bits,
string_vals,
byte_len_of_string_tmstmp_vals_on_tmln,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
..
} => {
// if this is a bad signal, go ahead and skip it
if signal_error.is_some() {
continue;
Signal::Data {..} => {*signal_idx}
Signal::Alias {signal_alias, ..} => {
let SignalIdx(ref signal_idx) = signal_alias;
signal_idx.clone()
}
}
};
// after handling potential indirection, go ahead and update the timeline
// of the signal signal_idx references
let signal = vcd.all_signals.get_mut(signal_idx).unwrap();
match signal {
Signal::Data {name, sig_type, ref mut signal_error, num_bits,
string_timeline, string_timeline_markers, ..} => {
// if this is a bad signal, go ahead and skip it
if signal_error.is_some() {continue;}
// Get bitwidth and verify that it is 1.
// Also account for the error case of a bitwidth of `None`
@ -449,41 +449,37 @@ pub(super) fn parse_events<R: std::io::Read>(
Some(ref num_bits) => {
if *num_bits != 1 {
let (f, l) = (file!(), line!());
let msg = format!(
"\
let msg = format!("\
Error near {f}:{l}. The bitwidth for signal {name} \
of signal_type {signal_type:?} is expected to be `1` not \
of sig_type {sig_type:?} is expected to be `1` not \
`{num_bits}`. \
This error occurred while parsing the vcd file at \
{cursor:?}"
);
{cursor:?}");
*signal_error = Some(msg);
continue;
}
}
None => {
let (f, l) = (file!(), line!());
let msg = format!(
"\
let msg = format!("\
Error near {f}:{l}. The bitwidth for signal {name} \
must be specified for a signal of type {signal_type:?}. \
must be specified for a signal of type {sig_type:?}. \
This error occurred while parsing the vcd file at \
{cursor:?}"
);
{cursor:?}");
Err(msg)?;
}
};
// record timestamp at which this event occurs
lsb_indxs_of_string_tmstmp_vals_on_tmln
.push(LsbIdxOfTmstmpValOnTmln(curr_tmstmp_lsb_idx));
byte_len_of_string_tmstmp_vals_on_tmln.push(curr_tmstmp_len_u8);
let (f, l )= (file!(), line!());
let timeline_idx = u32::try_from(vcd.timeline.len()).map_err(
|_| format!("Error near {f}:{l}. Failed to convert from usize to u32."))?;
let timeline_idx = TimelineIdx(timeline_idx);
// record value
string_vals.push(val);
string_timeline_markers.push(timeline_idx);
string_timeline.push(val);
Ok(())
}
SignalEnum::Alias { .. } => {
Signal::Alias {..} => {
let (f, l )= (file!(), line!());
let msg = format!(
"Error near {f}:{l}, a signal alias should not point to a signal alias.\n\
@ -492,52 +488,7 @@ pub(super) fn parse_events<R: std::io::Read>(
}
}?;
}
// Store real values as a string as well and let the user parse it to an f64
"s" | " S" | "r" | "R" => {
let val = word[1..].to_string();
let (hash, cursor) = next_word!(word_reader)?;
// lokup signal idx
let signal_idx = signal_map.get(hash).ok_or(()).map_err(|_| {
format!(
"Error near {}:{}. Failed to lookup signal {hash} at {cursor:?}",
file!(),
line!()
)
})?;
let signal = vcd.dealiasing_signal_idx_to_signal_lookup_mut(signal_idx)?;
match signal {
SignalEnum::Data {
ref mut signal_error,
string_vals,
byte_len_of_string_tmstmp_vals_on_tmln,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
..
} => {
// if this is a bad signal, go ahead and skip it
if signal_error.is_some() {
continue;
}
// record timestamp at which this event occurs
lsb_indxs_of_string_tmstmp_vals_on_tmln
.push(LsbIdxOfTmstmpValOnTmln(curr_tmstmp_lsb_idx));
byte_len_of_string_tmstmp_vals_on_tmln.push(curr_tmstmp_len_u8);
// record string value
string_vals.push(val);
Ok(())
}
SignalEnum::Alias { .. } => {
let (f, l) = (file!(), line!());
let msg = format!(
"Error near {f}:{l}, a signal alias should not point to a signal alias.\n\
This error occurred while parsing vcd file at {cursor:?}");
Err(msg)
}
}?;
}
_ => {}
}
}

View file

@ -1,15 +1,7 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use chrono::prelude::{DateTime, Utc};
use chrono::prelude::*;
use itertools::Itertools;
use super::super::reader::{next_word, Cursor, WordReader};
use super::super::types::{Metadata, Timescale, Version};
use super::combinator_atoms::{digit, tag, take_until, take_while};
use super::types::ParseResult;
use super::*;
pub(super) fn parse_date(
word_and_ctx1 : (&str, &Cursor),
@ -18,6 +10,7 @@ pub(super) fn parse_date(
word_and_ctx4 : (&str, &Cursor),
word_and_ctx5 : (&str, &Cursor),
) -> Result<DateTime<Utc>, String> {
let day = {
// check for another word in the file
let (word, cursor) = word_and_ctx1;
@ -27,7 +20,7 @@ pub(super) fn parse_date(
let msg = format!("Error near {}:{}.", file!(), line!());
let msg2 = format!("{word} is not a valid weekday : expected one of {days:?}\n");
let msg3 = format!("failure location: {cursor:?}");
return Err(format!("{}{}{}", msg, msg2, msg3));
return Err(format!("{}{}{}", msg, msg2, msg3))
}
word.to_string()
@ -38,14 +31,16 @@ pub(super) fn parse_date(
let (word, cursor) = word_and_ctx2;
let months = [
"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sept", "Oct", "Nov", "Dec",
"Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug",
"Sept", "Oct", "Nov", "Dec",
];
if !months.contains(&word) {
let msg = format!("Error near {}:{}.", file!(), line!());
let msg2 = format!("{word} is not a valid month : expected one of {months:?}\n");
let msg3 = format!("failure location: {cursor:?}");
return Err(format!("{}{}{}", msg, msg2, msg3));
return Err(format!("{}{}{}", msg, msg2, msg3))
}
word.to_string()
@ -57,14 +52,15 @@ pub(super) fn parse_date(
let date : u8 = match word.to_string().parse() {
Ok(date) => date,
Err(e) => return Err(format!("Error near {}:{}. {e}", file!(), line!())),
Err(e) => {return Err(format!("Error near {}:{}. {e}", file!(), line!()))}
};
if date > 31 {
let msg = format!("Error near {}:{}.", file!(), line!());
let msg2 = format!("{word} is not a valid date : must be between 0 and 31\n");
let msg3 = format!("failure location: {cursor:?}");
return Err(format!("{}{}{}", msg, msg2, msg3));
return Err(format!("{}{}{}", msg, msg2, msg3))
}
date.to_string()
@ -76,9 +72,7 @@ pub(super) fn parse_date(
let res = take_until(word, b':');
res.assert_match()?;
let hh: u8 = res
.matched
.to_string()
let hh : u8 = res.matched.to_string()
.parse()
.map_err(|e| format!("Error near {}:{}. {e}", file!(), line!()))?;
@ -86,16 +80,14 @@ pub(super) fn parse_date(
let msg = format!("Error near {}:{}.", file!(), line!());
let msg2 = format!("{hh} is not a valid hour : must be between 0 and 23\n");
let msg3 = format!("failure location: {cursor:?}");
return Err(format!("{}{}{}", msg, msg2, msg3));
return Err(format!("{}{}{}", msg, msg2, msg3))
}
// get minute
let word = &res.residual[1..]; // chop off colon which is at index 0
let res = take_until(word, b':');
res.assert_match()?;
let mm: u8 = res
.matched
.to_string()
let mm : u8 = res.matched.to_string()
.parse()
.map_err(|e| format!("Error near {}:{}. {e}", file!(), line!()))?;
@ -103,15 +95,14 @@ pub(super) fn parse_date(
let msg = format!("Error near {}:{}.", file!(), line!());
let msg2 = format!("{mm} is not a valid minute : must be between 0 and 60\n");
let msg3 = format!("failure location: {cursor:?}");
return Err(format!("{}{}{}", msg, msg2, msg3));
return Err(format!("{}{}{}", msg, msg2, msg3))
}
// get second
// let ss : u8 = remainder.to_string().parse().unwrap();
res.assert_residual()?;
let residual = &res.residual[1..]; // chop of colon which is at index 0
let ss: u8 = residual
.to_string()
let ss : u8 = residual.to_string()
.parse()
.map_err(|e| format!("Error near {}:{}. {e}", file!(), line!()))?;
@ -119,7 +110,7 @@ pub(super) fn parse_date(
let msg = format!("Error near {}:{}.", file!(), line!());
let msg2 = format!("{ss} is not a valid second : must be between 0 and 60\n");
let msg3 = format!("failure location: {cursor:?}");
return Err(format!("{}{}{}", msg, msg2, msg3));
return Err(format!("{}{}{}", msg, msg2, msg3))
}
(hh.to_string(), mm.to_string(), ss.to_string())
};
@ -133,107 +124,95 @@ pub(super) fn parse_date(
// unfortunately, the minutes, seconds, and hour could occur in an
// unexpected order
let full_date = format!("{day} {month} {date} {hh}:{mm}:{ss} {year}");
let full_date = DateTime::parse_from_str(full_date.as_str(), "%a %b %e %T %Y");
let full_date = Utc.datetime_from_str(full_date.as_str(), "%a %b %e %T %Y");
if full_date.is_ok() {
return Ok(full_date.unwrap().into());
return Ok(full_date.unwrap())
}
Err(format!(
"Error near {}:{}. Failed to parse date.",
file!(),
line!()
))
Err(format!("Error near {}:{}. Failed to parse date.", file!(), line!()))
}
pub(super) fn parse_version<R: std::io::Read>(
word_reader: &mut WordReader<R>,
) -> Result<Version, String> {
pub(super) fn parse_version(word_reader : &mut WordReader) -> Result<Version, String> {
let mut version = String::new();
loop {
let (word, _) = next_word!(word_reader)?;
let (word, _) = word_reader.next_word()?;
if word == "$end" {
// truncate trailing whitespace
let version = version[0..(version.len() - 1)].to_string();
return Ok(Version(version));
} else {
return Ok(Version(version))
}
else {
version.push_str(word);
version.push(' ');
version.push_str(" ");
}
}
}
pub(super) fn parse_timescale<R: std::io::Read>(
word_reader: &mut WordReader<R>,
) -> Result<(Option<u32>, Timescale), String> {
pub(super) fn parse_timescale(word_reader : &mut WordReader) -> Result<(Option<u32>, Timescale), String> {
// we might see `1ps $end` or `1 ps $end`
// first get timescale
let (word, _) = next_word!(word_reader)?;
let ParseResult { matched, residual } = take_while(word, digit);
let (word, _) = word_reader.next_word()?;
let word = word.to_string();
let ParseResult{matched, residual} = take_while(word.as_str(), digit);
let scalar = matched;
let scalar: u32 = scalar
.to_string()
.parse()
let scalar : u32 = scalar.to_string().parse()
.map_err(|e| format!("Error near {}:{}. {e}", file!(), line!()))?;
let timescale = {
if residual.is_empty() {
let (word, _) = next_word!(word_reader)?;
if residual == "" {
let (word, _) = word_reader.next_word()?;
let unit = match word {
"fs" => Ok(Timescale::Fs),
"ps" => Ok(Timescale::Ps),
"ns" => Ok(Timescale::Ns),
"us" => Ok(Timescale::Us),
"ms" => Ok(Timescale::Ms),
"s" => Ok(Timescale::S),
_ => Err(format!(
"Error near {}:{}. Unknown unit {word}.",
file!(),
line!()
)),
}?;
"fs" => {Ok(Timescale::Fs)}
"ps" => {Ok(Timescale::Ps)}
"ns" => {Ok(Timescale::Ns)}
"us" => {Ok(Timescale::Us)}
"ms" => {Ok(Timescale::Ms)}
"s" => {Ok(Timescale::S)}
_ => {Err(format!("Error near {}:{}. Unknown unit {word}.", file!(), line!()))}
}.unwrap();
(Some(scalar), unit)
} else {
}
else {
let unit = match residual {
"fs" => Ok(Timescale::Fs),
"ps" => Ok(Timescale::Ps),
"ns" => Ok(Timescale::Ns),
"us" => Ok(Timescale::Us),
"ms" => Ok(Timescale::Ms),
"s" => Ok(Timescale::S),
_ => Err(format!(
"Error near {}:{}. Unknown unit {residual}.",
file!(),
line!()
)),
}?;
"fs" => {Ok(Timescale::Fs)}
"ps" => {Ok(Timescale::Ps)}
"ns" => {Ok(Timescale::Ns)}
"us" => {Ok(Timescale::Us)}
"ms" => {Ok(Timescale::Ms)}
"s" => {Ok(Timescale::S)}
_ => {Err(format!("Error near {}:{}. Unknown unit {residual}.", file!(), line!()))}
}.unwrap();
(Some(scalar), unit)
}
};
// then check for the `$end` keyword
let (word, _) = next_word!(word_reader)?;
tag(word, "$end").assert_match()?;
let (end, _) = word_reader.next_word()?;
tag(end, "$end").assert_match()?;
return Ok(timescale);
Ok(timescale)
}
pub(super) fn parse_metadata<R: std::io::Read>(
word_reader: &mut WordReader<R>,
) -> Result<Metadata, String> {
pub(super) fn parse_metadata(word_reader : &mut WordReader) -> Result<Metadata, String> {
let mut metadata = Metadata {
date : None,
version : None,
timescale: (None, Timescale::Unit),
timescale : (None, Timescale::Unit)
};
loop {
// check for another word in the file
let (word, _) = next_word!(word_reader)?;
let (word, _) = word_reader.next_word()?;
let ParseResult{matched, residual} = tag(word, "$");
match matched {
@ -259,7 +238,7 @@ pub(super) fn parse_metadata<R: std::io::Read>(
let mut lookahead_5_words : Vec<(String, Cursor)> = Vec::new();
for _ in 0..5 {
let (word, cursor) = next_word!(word_reader)?;
let (word, cursor) = word_reader.next_word()?;
let word = word.to_string();
match word.as_str() {
"$end" => {
@ -274,9 +253,7 @@ pub(super) fn parse_metadata<R: std::io::Read>(
// we no longer attempt to parse date if we weren't able to lookahead 5
// words
if found_end {
continue;
}
if found_end {continue}
let permutations = lookahead_5_words
.iter()
@ -303,9 +280,10 @@ pub(super) fn parse_metadata<R: std::io::Read>(
// store date and exit loop if a match is found
if parsed_date.is_ok() {
metadata.date = Some(parsed_date?);
break;
metadata.date = Some(parsed_date.unwrap());
break
}
}
}
"version" => {
@ -320,8 +298,8 @@ pub(super) fn parse_metadata<R: std::io::Read>(
metadata.timescale = timescale.unwrap();
}
}
"scope" => break,
"var" => break,
"scope" => {break}
"var" => {break}
// we keep searching for words until we've found one of the following
// keywords, ["version", "timescale", "scope", "var"]
_ => {}
@ -330,6 +308,7 @@ pub(super) fn parse_metadata<R: std::io::Read>(
// if word does not start with `$`, then we keep looping
_ => {}
}
}
Ok(metadata)
return Ok(metadata)
}

View file

@ -1,189 +1,94 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
//! part of the vcd parser that handles parsing the signal tree and
//! building the resulting signal tree
use super::*;
/// part of the vcd parser that handles parsing the signal tree and
/// building the resulting signal tree
use std::collections::HashMap;
use super::super::reader::{curr_word, next_word, WordReader};
use super::super::signal::{SignalEnum, SignalType};
use super::super::types::{Scope, ScopeIdx, SignalIdx, VCD};
use super::combinator_atoms::{ident, tag};
use super::types::ParseResult;
pub(super) fn parse_var<R: std::io::Read>(
word_reader: &mut WordReader<R>,
pub(super) fn parse_var<'a>(
word_reader : &mut WordReader,
parent_scope_idx : ScopeIdx,
vcd: &mut VCD,
signal_map: &mut HashMap<String, SignalIdx>,
path: &Vec<String>,
vcd : &'a mut VCD,
signal_map : &mut HashMap<String, SignalIdx>
) -> Result<(), String> {
let (word, cursor) = next_word!(word_reader)?;
let expected_types = [
"event",
"integer",
"parameter",
"real",
"realtime",
"reg",
"string",
"supply0",
"supply1",
"time",
"tri",
"triand",
"trior",
"trireg",
"tri0",
"tri1",
"wand",
"wire",
"wor",
];
let (word, cursor) = word_reader.next_word()?;
let expected_types = ["integer", "parameter", "real", "reg", "string", "wire", "tri1", "time"];
// $var parameter 3 a IDLE $end
// ^^^^^^^^^ - var_type
let var_type = match word {
"event" => Ok(SignalType::Event),
"integer" => Ok(SignalType::Integer),
"parameter" => Ok(SignalType::Parameter),
"real" => Ok(SignalType::Real),
"realtime" => Ok(SignalType::RealTime),
"reg" => Ok(SignalType::Reg),
"string" => Ok(SignalType::Str),
"supply0" => Ok(SignalType::Supply0),
"supply1" => Ok(SignalType::Supply1),
"tri" => Ok(SignalType::Tri),
"triand" => Ok(SignalType::TriAnd),
"trior" => Ok(SignalType::TriOr),
"trireg" => Ok(SignalType::TriReg),
"tri0" => Ok(SignalType::Tri0),
"tri1" => Ok(SignalType::Tri1),
"time" => Ok(SignalType::Time),
"wand" => Ok(SignalType::WAnd),
"wire" => Ok(SignalType::Wire),
"wor" => Ok(SignalType::WOr),
"integer" => {Ok(SigType::Integer)}
"parameter" => {Ok(SigType::Parameter)}
"real" => {Ok(SigType::Real)}
"reg" => {Ok(SigType::Reg)}
"string" => {Ok(SigType::Str)}
"wire" => {Ok(SigType::Wire)}
"tri1" => {Ok(SigType::Tri1)}
"time" => {Ok(SigType::Time)}
_ => {
let err = format!(
"Error near {}:{} \
let err = format!("Error near {}:{} \
found keyword `{word}` but expected one of \
{expected_types:?} on {cursor:?}",
file!(),
line!()
);
{expected_types:?} on {cursor:?}", file!(), line!());
Err(err)
}
}?;
let (word, cursor) = next_word!(word_reader)?;
let (word, cursor) = word_reader.next_word()?;
let parse_err = format!("failed to parse as usize on {cursor:?}");
// $var parameter 3 a IDLE $end
// ^ - num_bits
let num_bits = match var_type {
SignalType::Event
| SignalType::Integer
| SignalType::Parameter
| SignalType::Reg
| SignalType::Supply0
| SignalType::Supply1
| SignalType::Tri
| SignalType::TriAnd
| SignalType::TriOr
| SignalType::TriReg
| SignalType::Tri0
| SignalType::Tri1
| SignalType::Time
| SignalType::WAnd
| SignalType::Wire
| SignalType::WOr => {
let num_bits = word
.parse::<usize>()
.unwrap_or_else(|_| panic!("{}", parse_err));
let num_bits = u32::try_from(num_bits).map_err(|_| {
format!(
"Error near {}:{} while parsing vcd file at {cursor:?}. \
This signal has {num_bits} > 2^32 - 1 bits.",
file!(),
line!()
)
})?;
Some(num_bits)
// ^ - no_bits
let no_bits = match var_type {
SigType::Integer | SigType::Parameter |
SigType::Real | SigType::Reg |
SigType::Wire | SigType::Tri1 |
SigType::Time => {
let no_bits = word.parse::<usize>().expect(parse_err.as_str());
Some(no_bits)
}
// for strings, reals, and realtimes we don't really care what the number of bits is
_ => None,
// for strings, we don't really care what the number of bits is
_ => {None}
};
// $var parameter 3 a IDLE $end
// ^ - signal_alias
let (word, _) = next_word!(word_reader)?;
let (word, _) = word_reader.next_word()?;
let signal_alias = word.to_string();
// $var parameter 3 a IDLE $end
// ^^^^ - full_signal_name(can extend until $end)
let mut full_signal_name = Vec::<String>::new();
let mut size = None;
loop {
let (word, _) = next_word!(word_reader)?;
let (word, _) = word_reader.next_word()?;
match word {
"$end" => break,
other if other.starts_with('[') => size = Some(other.to_string()),
_ => full_signal_name.push(word.to_string()),
"$end" => {break}
_ => {full_signal_name.push(word.to_string())}
}
}
let full_signal_name = full_signal_name.join(" ");
let num_bytes = if num_bits.is_some() {
let bytes_required = SignalEnum::bytes_required(num_bits.unwrap(), &full_signal_name)?;
Some(bytes_required)
} else {
None
};
// Is the current variable an alias to a signal already encountered?
// if so, handle ref_signal_idx accordingly, if not, add signal to hash
// map
let (signal, signal_idx) = match signal_map.get(&signal_alias) {
Some(ref_signal_idx) => {
let signal_idx = SignalIdx(vcd.all_signals.len());
let signal = SignalEnum::Alias {
name: full_signal_name.clone(),
path: path
.iter()
.cloned()
.chain([full_signal_name])
.collect::<Vec<String>>(),
signal_alias: *ref_signal_idx,
};
let signal = Signal::Alias{
name: full_signal_name,
signal_alias: *ref_signal_idx};
(signal, signal_idx)
}
None => {
let signal_idx = SignalIdx(vcd.all_signals.len());
signal_map.insert(signal_alias.to_string(), signal_idx);
let signal = SignalEnum::Data {
name: full_signal_name.clone(),
path: path
.iter()
.cloned()
.chain([full_signal_name])
.collect::<Vec<String>>(),
signal_type: var_type,
index: size,
let signal = Signal::Data{
name: full_signal_name,
sig_type: var_type,
signal_error: None,
num_bits,
num_bytes,
num_bits: no_bits,
self_idx: signal_idx,
nums_encoded_as_fixed_width_le_u8: vec![],
string_vals: vec![],
lsb_indxs_of_num_tmstmp_vals_on_tmln: vec![],
byte_len_of_num_tmstmp_vals_on_tmln: vec![],
byte_len_of_string_tmstmp_vals_on_tmln: vec![],
lsb_indxs_of_string_tmstmp_vals_on_tmln: vec![],
};
u8_timeline: vec![],
u8_timeline_markers: vec![],
string_timeline: vec![],
string_timeline_markers: vec![],
scope_parent: parent_scope_idx };
(signal, signal_idx)
}
};
@ -198,10 +103,10 @@ pub(super) fn parse_var<R: std::io::Read>(
/// Sometimes, variables can be listed outside of scopes.
/// We call these orphaned vars.
fn parse_orphaned_vars<R: std::io::Read>(
word_reader: &mut WordReader<R>,
vcd: &mut VCD,
signal_map: &mut HashMap<String, SignalIdx>,
fn parse_orphaned_vars<'a>(
word_reader : &mut WordReader,
vcd : &'a mut VCD,
signal_map : &mut HashMap<String, SignalIdx>
) -> Result<(), String> {
// create scope for unscoped signals if such a scope does not
// yet exist
@ -219,40 +124,39 @@ fn parse_orphaned_vars<R: std::io::Read>(
if scope.name == scope_name {
scope_idx = scope.self_idx;
scope_already_exists = true;
break;
break
}
}
if !scope_already_exists {
vcd.all_scopes.push(Scope {
vcd.all_scopes.push(
Scope {
name: scope_name.to_string(),
parent_idx: None,
self_idx: scope_idx,
child_signals: vec![],
child_scopes: vec![],
});
vcd.root_scopes.push(scope_idx);
child_scopes: vec![]
}
);
vcd.scope_roots.push(scope_idx);
}
// we can go ahead and parse the current var as we've already encountered
// "$var" before now.
parse_var(word_reader, scope_idx, vcd, signal_map, &vec![])?;
parse_var(word_reader, scope_idx, vcd, signal_map)?;
loop {
let (word, cursor) = next_word!(word_reader)?;
let (word, cursor) = word_reader.next_word()?;
match word {
"$var" => {
parse_var(word_reader, scope_idx, vcd, signal_map, &vec![])?;
parse_var(word_reader, scope_idx, vcd, signal_map)?;
}
"$scope" => break,
"$scope" => {break}
_ => {
let msg = format!(
"Error near {}:{}.\
let msg = format!("Error near {}:{}.\
Expected $scope or $var, found \
{word} at {cursor:?}",
file!(),
line!()
);
{word} at {cursor:?}", file!(), line!());
Err(msg)?;
}
};
@ -261,40 +165,30 @@ fn parse_orphaned_vars<R: std::io::Read>(
Ok(())
}
fn parse_scopes_inner<R: std::io::Read>(
word_reader: &mut WordReader<R>,
pub(super) fn parse_signal_tree<'a>(
word_reader : &mut WordReader,
parent_scope_idx : Option<ScopeIdx>,
vcd: &mut VCD,
signal_map: &mut HashMap<String, SignalIdx>,
path: &Vec<String>,
vcd : &'a mut VCD,
signal_map : &mut HashMap<String, SignalIdx>
) -> Result<(), String> {
// $scope module reg_mag_i $end
// ^^^^^^ - module keyword
let (keyword, cursor) = next_word!(word_reader)?;
let (keyword, cursor) = word_reader.next_word()?;
let expected = ["module", "begin", "task", "function", "fork"];
let expected = ["module", "begin", "task", "function"];
if expected.contains(&keyword) {
Ok(())
} else {
let err = format!(
"Error near {}:{}. \
let err = format!("Error near {}:{}. \
found keyword `{keyword}` but expected one of \
{expected:?} on {cursor:?}",
file!(),
line!()
);
{expected:?} on {cursor:?}", file!(), line!());
Err(err)
}?;
// $scope module reg_mag_i $end
// ^^^^^^^^^ - scope name
let (scope_name, _) = next_word!(word_reader)?;
// In some cases there are VCD files which have scopes without names.
// since these occur in the wild, we'll tolerate them even if it is unclear
// if it is supported or not by the spec.
if scope_name != "$end" {
let mut path = path.clone();
path.push(scope_name.to_string());
let (scope_name, _) = word_reader.next_word()?;
let curr_scope_idx = ScopeIdx(vcd.all_scopes.len());
@ -306,23 +200,28 @@ fn parse_scopes_inner<R: std::io::Read>(
let parent_scope = vcd.all_scopes.get_mut(parent_scope_idx).unwrap();
parent_scope.child_scopes.push(curr_scope_idx);
}
None => vcd.root_scopes.push(curr_scope_idx),
None => {
vcd.scope_roots.push(curr_scope_idx)
}
}
// add this scope to list of existing scopes
vcd.all_scopes.push(Scope {
vcd.all_scopes.push(
Scope {
name: scope_name.to_string(),
parent_idx: parent_scope_idx,
self_idx: curr_scope_idx,
child_signals: vec![],
child_scopes: vec![],
});
child_scopes: vec![]
}
);
// $scope module reg_mag_i $end
// ^^^^ - end keyword
ident(word_reader, "$end")?;
loop {
let (word, cursor) = next_word!(word_reader)?;
let (word, cursor) = word_reader.next_word()?;
let ParseResult{matched, residual} = tag(word, "$");
match matched {
// we hope that this word starts with a `$`
@ -330,113 +229,35 @@ fn parse_scopes_inner<R: std::io::Read>(
match residual {
"scope" => {
// recursive - parse inside of current scope tree
parse_scopes_inner(
word_reader,
Some(curr_scope_idx),
vcd,
signal_map,
&path,
)?;
parse_signal_tree(word_reader, Some(curr_scope_idx), vcd, signal_map)?;
}
"var" => {
parse_var(word_reader, curr_scope_idx, vcd, signal_map, &path)?;
parse_var(word_reader, curr_scope_idx, vcd, signal_map)?;
}
"upscope" => {
ident(word_reader, "$end")?;
break;
break
}
// we ignore comments
"comment" => loop {
if ident(word_reader, "$end").is_ok() {
break;
"comment" => {
loop {
if ident(word_reader, "$end").is_ok() {break}
}
}
},
_ => {
let err = format!(
"Error near {}:{}. \
let err = format!("Error near {}:{}. \
found keyword `{residual}` but expected \
`$scope`, `$var`, `$comment`, or `$upscope` \
on {cursor:?}",
file!(),
line!()
);
return Err(err);
on {cursor:?}", file!(), line!());
return Err(err)
}
}
}
_ => {
let err = format!(
"Error near {}:{}. \
let err = format!("Error near {}:{}. \
found keyword `{matched}` but \
expected `$` on {cursor:?}",
file!(),
line!()
);
return Err(err);
}
}
}
} else {
// We'll be conservative and only allow new scopes in this case, and make the nameless
// scope completely transparent. I.e.
// $scope module a $end
// $scope module $end
// $scope module b $end
// ...
// $upscope
// $upscope
// $upscope
// will create `a.b`
loop {
let (word, cursor) = next_word!(word_reader)?;
let ParseResult { matched, residual } = tag(word, "$");
match matched {
// we hope that this word starts with a `$`
"$" => {
match residual {
"scope" => {
// recursive - parse inside of current scope tree
parse_scopes_inner(
word_reader,
parent_scope_idx,
vcd,
signal_map,
&path,
)?;
}
"upscope" => {
ident(word_reader, "$end")?;
break;
}
// we ignore comments
"comment" => loop {
if ident(word_reader, "$end").is_ok() {
break;
}
},
_ => {
let err = format!(
"Error near {}:{}. \
found keyword `{residual}` in annonyoums scope but expected \
`$scope`, `$comment`, or `$upscope` \
on {cursor:?}",
file!(),
line!()
);
return Err(err);
}
}
}
_ => {
let err = format!(
"Error near {}:{}. \
found keyword `{matched}` but \
expected `$` on {cursor:?}",
file!(),
line!()
);
return Err(err);
}
expected `$` on {cursor:?}", file!(), line!());
return Err(err)
}
}
}
@ -444,13 +265,13 @@ fn parse_scopes_inner<R: std::io::Read>(
Ok(())
}
pub(super) fn parse_scopes<R: std::io::Read>(
word_reader: &mut WordReader<R>,
vcd: &mut VCD,
signal_map: &mut HashMap<String, SignalIdx>,
pub(super) fn parse_scopes<'a>(
word_reader : &mut WordReader,
vcd : &'a mut VCD,
signal_map : &mut HashMap<String, SignalIdx>
) -> Result<(), String> {
// get the current word
let (word, _) = curr_word!(word_reader)?;
let (word, _) = word_reader.curr_word()?;
// we may have orphaned vars that occur before the first scope
if word == "$var" {
@ -458,62 +279,52 @@ pub(super) fn parse_scopes<R: std::io::Read>(
}
// get the current word
let (word, cursor) = curr_word!(word_reader)?;
let (word, cursor) = word_reader.curr_word()?;
// the current word should be "scope", as `parse_orphaned_vars`(if it
// was called), should have terminated upon encountering "$scope".
// If `parse_orphaned_vars` was not called, `parse_scopes` should still
// have only been called if the caller encountered the word "$scope"
if word != "$scope" {
let msg = format!(
"Error near {}:{}.\
let msg = format!("Error near {}:{}.\
Expected $scope or $var, found \
{word} at {cursor:?}",
file!(),
line!()
);
return Err(msg);
{word} at {cursor:?}", file!(), line!());
return Err(msg)
}
// now for the interesting part
parse_scopes_inner(word_reader, None, vcd, signal_map, &vec![])?;
parse_signal_tree(word_reader, None, vcd, signal_map)?;
// let err = format!("reached end of file without parser leaving {}", function_name!());
let expected_keywords = ["$scope", "$enddefinitions"];
// there could be multiple signal trees, and unfortunately, we
// can't merge the earlier call to `parse_scopes_inner` into this loop
// can't merge the earlier call to `parse_signal_tree` into this loop
// because this loop gets a word from `next_word` instead of
// `curr_word()`.
loop {
let (word, cursor) = next_word!(word_reader)?;
let (word, cursor) = word_reader.next_word()?;
match word {
"$scope" => {
parse_scopes_inner(word_reader, None, vcd, signal_map, &vec![])?;
parse_signal_tree(word_reader, None, vcd, signal_map)?;
}
"$enddefinitions" => {
ident(word_reader, "$end")?;
break;
break
}
"$comment" => {
"comment" => {
// although we don't store comments, we still need to advance the
// word_reader cursor to the end of the comment
loop {
if ident(word_reader, "$end").is_ok() {
break;
}
if ident(word_reader, "$end").is_ok() {break}
}
}
_ => {
let err = format!(
"Error near {}:{} \
let err = format!("Error near {}:{} \
found keyword `{word}` but expected one of \
{expected_keywords:?} on {cursor:?}",
file!(),
line!()
);
return Err(err);
{expected_keywords:?} on {cursor:?}", file!(), line!());
return Err(err)
}
}
}

View file

@ -1,27 +1,25 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
#[derive(Debug)]
pub(super) struct ParseResult<'a> {
pub(super) matched : &'a str,
pub(super) residual: &'a str,
}
pub(super) residual : &'a str}
impl<'a> ParseResult<'a> {
pub(super) fn assert_match(& self) -> Result<&str, String> {
if self.matched.is_empty() {
Err("no match".to_string())
} else {
Ok(self.matched)
if self.matched == "" {
return Err("no match".to_string())
}
else {
return Ok(self.matched)
}
}
pub(super) fn assert_residual(& self) -> Result<&str, String> {
if self.residual.is_empty() {
Err("no residual".to_string())
} else {
Ok(self.residual)
if self.residual == "" {
return Err("no residual".to_string())
}
else {
return Ok(self.residual)
}
}
}

View file

@ -1,12 +1,11 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use std::fs::File;
use std::collections::VecDeque;
use std::io;
use std::io::BufRead;
use std::slice;
use std::str;
use std::io::prelude::*;
use std::io;
use backtrace::{ Backtrace, BacktraceFrame, BacktraceSymbol };
#[derive(Debug, Clone)]
pub(super) struct Line(pub(super) usize);
@ -14,9 +13,11 @@ pub(super) struct Line(pub(super) usize);
pub(super) struct Word(pub(super) usize);
#[derive(Debug, Clone)]
pub(super) struct Cursor(pub(super) Line, pub(super) Word);
#[derive(Debug)]
pub(super) enum FileStatus{Eof}
pub(super) struct WordReader<R: io::Read> {
reader: io::BufReader<R>,
pub struct WordReader {
reader : io::BufReader<File>,
eof : bool,
buffers : Vec<String>,
curr_line : usize,
@ -24,20 +25,23 @@ pub(super) struct WordReader<R: io::Read> {
curr_slice : Option<(*const u8, usize, Cursor)>,
}
impl<R: std::io::Read> WordReader<R> {
pub(super) fn new(file: R) -> WordReader<R> {
impl WordReader {
pub(super) fn new(file : File) -> WordReader {
let reader = io::BufReader::new(file);
WordReader {
reader,
reader : reader,
eof : false,
buffers : vec![],
curr_line : 0,
str_slices : VecDeque::new(),
curr_slice: None,
curr_slice : None
}
}
pub(super) fn next_word(&mut self) -> Option<(&str, Cursor)> {
pub(super) fn next_word(&mut self) -> Result<(&str, Cursor), FileStatus> {
// although reaching the eof is not technically an error, in most cases,
// we treat it like one in the rest of the codebase.
@ -46,9 +50,7 @@ impl<R: std::io::Read> WordReader<R> {
if self.str_slices.is_empty() {
self.buffers.clear();
if self.eof {
return None;
}
if self.eof {return Err(FileStatus::Eof)}
let num_buffers = 10;
@ -69,16 +71,16 @@ impl<R: std::io::Read> WordReader<R> {
for word in words.enumerate() {
let (word_idx, word) = word;
let position = Cursor(Line(self.curr_line), Word(word_idx + 1));
self.str_slices
.push_back((word.as_ptr(), word.len(), position))
self.str_slices.push_back((word.as_ptr(), word.len(), position))
}
}
}
// if after we've attempted to read in more content from the file,
// there are still no words...
if self.str_slices.is_empty() {
return None;
return Err(FileStatus::Eof)
}
// if we make it here, we return the next word
@ -86,46 +88,53 @@ impl<R: std::io::Read> WordReader<R> {
let (ptr, len, position) = self.str_slices.pop_front().unwrap();
let slice = slice::from_raw_parts(ptr, len);
self.curr_slice = Some((ptr, len, position.clone()));
return Some((str::from_utf8(slice).unwrap(), position));
return Ok((str::from_utf8(slice).unwrap(), position));
};
}
pub(super) fn curr_word(&mut self) -> Option<(&str, Cursor)> {
pub(super) fn curr_word(&mut self) -> Result<(&str, Cursor), FileStatus> {
match &self.curr_slice {
Some(slice) => unsafe {
Some(slice) => {
unsafe {
let (ptr, len, position) = slice.clone();
let slice = slice::from_raw_parts(ptr, len);
return Some((str::from_utf8(slice).unwrap(), position));
},
None => None,
Ok((str::from_utf8(slice).unwrap(), position))
}
}
None => {Err(FileStatus::Eof)}
}
}
}
macro_rules! next_word {
($word_reader:ident) => {
$word_reader.next_word().ok_or(()).map_err(|_| {
format!(
"Error near {}:{}. Did not expect to reach end of file here.",
file!(),
line!()
)
})
};
fn previous_symbol(level: u32) -> Option<BacktraceSymbol> {
let (trace, curr_file, curr_line) = (Backtrace::new(), file!(), line!());
let frames = trace.frames();
frames.iter()
.flat_map(BacktraceFrame::symbols)
.skip_while(|s| s.filename().map(|p| !p.ends_with(curr_file)).unwrap_or(true)
|| s.lineno() != Some(curr_line))
.nth(1 + level as usize).cloned()
}
macro_rules! curr_word {
($word_reader:ident) => {
$word_reader.curr_word().ok_or(()).map_err(|_| {
format!(
"Error near {}:{}. A call to curr_word! shouldn't \
fail unless next_word has not yet been invoked.",
file!(),
line!()
)
})
};
}
impl From<FileStatus> for String {
fn from(f: FileStatus) -> String {
let sym = previous_symbol(1);
let filename = sym
.as_ref()
.and_then(BacktraceSymbol::filename)
.map_or(None, |path| {path.to_str()})
.unwrap_or("(Couldn't determine filename)");
let lineno = sym
.as_ref()
.and_then(BacktraceSymbol::lineno)
.map_or(None, |path| {Some(path.to_string())})
.unwrap_or("(Couldn't determine line number)".to_string());
pub(super) use curr_word;
pub(super) use next_word;
match f {
FileStatus::Eof => format!(
"Error near {filename}:{lineno} \
No more words left in vcd file."),
}
}
}

View file

@ -1,715 +0,0 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use super::types;
use super::types::SignalIdx;
use num::BigUint;
// Index to the least significant byte of a timestamp
// value on the timeline
#[derive(Debug, Copy, Clone)]
pub struct LsbIdxOfTmstmpValOnTmln(pub(super) u32);
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum SignalType {
Event,
Integer,
Parameter,
Real,
RealTime,
Reg,
Str,
Supply0,
Supply1,
Time,
Tri,
TriAnd,
TriOr,
TriReg,
Tri0,
Tri1,
WAnd,
Wire,
WOr,
}
#[derive(Debug, PartialEq)]
pub enum SignalValue {
BigUint(BigUint),
String(String),
}
pub struct QueryResult<T> {
pub current: Option<(TimeStamp, T)>,
pub next: Option<TimeStamp>,
}
pub struct Signal<'a>(pub(super) &'a SignalEnum);
impl<'a> Signal<'a> {
pub fn name(&self) -> String {
let Signal(signal_enum) = &self;
signal_enum.name()
}
pub fn name_with_index(&self) -> String {
let Signal(signal_enum) = &self;
signal_enum.name_with_index()
}
pub fn index(&self) -> Option<String> {
let Signal(signal_enum) = &self;
signal_enum.index()
}
pub fn path(&self) -> &[String] {
match self.0 {
SignalEnum::Data { path, .. } => path,
SignalEnum::Alias { path, .. } => path,
}
}
pub fn signal_type(&self) -> Option<&SignalType> {
let Signal(signal_enum) = &self;
signal_enum.signal_type()
}
pub fn real_idx(&self) -> SignalIdx {
match self.0 {
SignalEnum::Data { self_idx, .. } => *self_idx,
SignalEnum::Alias { signal_alias, .. } => *signal_alias,
}
}
pub fn num_bits(&self) -> Option<u32> {
let Signal(signal_enum) = &self;
signal_enum.bits_required()
}
// NOTE: (zoq) I am removing thse because they aren't used in Surfer so I can't test them
// properly
/*
pub fn query_string_val_on_tmln(
&self,
desired_time: &BigUint,
vcd: &types::VCD,
) -> Result<String, SignalErrors> {
let Signal(signal_enum) = &self;
signal_enum
.query_string_val_on_tmln(desired_time, &vcd.tmstmps_encoded_as_u8s, &vcd.all_signals)
.map(|QueryResult{current, next: _}| current.map(|c| c.1))
}
pub fn query_num_val_on_tmln(
&self,
desired_time: &BigUint,
vcd: &types::VCD,
) -> Result<Option<BigUint>, SignalErrors> {
let Signal(signal_enum) = &self;
signal_enum
.query_num_val_on_tmln(desired_time, &vcd.tmstmps_encoded_as_u8s, &vcd.all_signals)
.map(|QueryResult{current, next: _}| current.map(|c| c.1))
}
*/
pub fn query_val_on_tmln(
&self,
desired_time: &BigUint,
vcd: &types::VCD,
) -> Result<QueryResult<SignalValue>, SignalErrors> {
let Signal(signal_enum) = &self;
let num_query_out = signal_enum.query_num_val_on_tmln(
desired_time,
&vcd.tmstmps_encoded_as_u8s,
&vcd.all_signals,
);
let str_query_out = signal_enum.query_string_val_on_tmln(
desired_time,
&vcd.tmstmps_encoded_as_u8s,
&vcd.all_signals,
);
// Both num and str will return the newest value that is closest to
// the desired time. If both have valid values, select the most recent
// one
match (num_query_out, str_query_out) {
(Ok(num_result), Ok(str_result)) => {
let next = match (num_result.next, str_result.next) {
(Some(n), Some(s)) => Some(n.min(s)),
(Some(n), None) => Some(n),
(None, Some(s)) => Some(s),
(None, None) => None,
};
match (num_result.current, str_result.current) {
(Some((num_time, num_value)), Some((str_time, str_value))) => {
if num_time > str_time {
Ok(QueryResult {
current: Some((num_time, SignalValue::BigUint(num_value))),
next,
})
} else {
Ok(QueryResult {
current: Some((str_time, SignalValue::String(str_value))),
next,
})
}
}
(Some((num_time, num_val)), None) => Ok(QueryResult {
current: Some((num_time, SignalValue::BigUint(num_val))),
next,
}),
(None, Some((str_time, str_value))) => Ok(QueryResult {
current: Some((str_time, SignalValue::String(str_value))),
next,
}),
(None, None) => Ok(QueryResult {
current: None,
next,
}),
}
}
(_e, Err(e)) => Err(e),
(Err(e), _e) => Err(e),
}
}
}
#[derive(Debug)]
pub(super) enum SignalEnum {
Data {
name: String,
path: Vec<String>,
signal_type: SignalType,
/// The optional [start:end] part of the signal name that is sometimes
/// added to signals
index: Option<String>,
/// I've seen a 0 bit signal parameter in a xilinx
/// simulation before that gets assigned 1 bit values.
/// I consider this to be bad behavior. We capture such
/// errors in the following type:
signal_error: Option<String>,
num_bits: Option<u32>,
num_bytes: Option<u16>,
/// TODO : may be able to remove self_idx
self_idx: SignalIdx,
/// A signal may take on a new value and hold that value
/// for sometime. We only need to record the value of a signal
/// when it changes(the is what VCDs tend to do).
/// A signal may need x amount of bytes to record its largest
/// possible value, so we record every single value of a given
/// signal as a sequence of x number of u8s.
/// For example, we might find that `my_signal.
/// nums_encoded_as_fixed_width_le_u8`
/// has two 32 bit values, namely, 1 and 2, encoded as follows:
/// my_signal.nums_encoded_as_fixed_width_le_u8 = vec![1u8, 0u8,
/// 0u8, 0u8, 2u8, 0u8, 0u8, 0u8];
nums_encoded_as_fixed_width_le_u8: Vec<u8>,
string_vals: Vec<String>,
/// we could do Vec<(LsbIdxOfTmstmpValOnTmln, u8)>, but I
/// suspect that Vec<LsbIdxOfTmstmpValOnTmln> is more cache
/// friendly. We use ``LsbIdxOfTmstmpValOnTmln`` to index into
/// the LSB of a particular timestamp encoded as the
/// minimum length u8 sequence within
/// ``vcd.tmstmps_encoded_as_u8s``, and we use the values in
/// ``byte_len_of_num_tmstmp_vals_on_tmln`` to determine how
/// many u8 values a particular timestamp is composed of.
lsb_indxs_of_num_tmstmp_vals_on_tmln: Vec<LsbIdxOfTmstmpValOnTmln>,
byte_len_of_num_tmstmp_vals_on_tmln: Vec<u8>,
byte_len_of_string_tmstmp_vals_on_tmln: Vec<u8>,
lsb_indxs_of_string_tmstmp_vals_on_tmln: Vec<LsbIdxOfTmstmpValOnTmln>,
},
Alias {
name: String,
path: Vec<String>,
signal_alias: SignalIdx,
},
}
#[derive(Debug)]
pub enum SignalErrors {
EmptyTimeline,
TimelineNotMultiple,
StrTmlnLenMismatch,
OrderingFailure {
lhs_time: BigUint,
mid_time: BigUint,
rhs_time: BigUint,
},
PointsToAlias,
NoNumBytes,
Other(String),
}
// these are thin type aliases primarily to make code more readable later on
type TimeStamp = BigUint;
type SignalValNum = BigUint;
// getter functions
impl SignalEnum {
pub fn name(&self) -> String {
match self {
SignalEnum::Data { name, .. } => name,
SignalEnum::Alias { name, .. } => name,
}
.clone()
}
pub fn signal_type(&self) -> Option<&SignalType> {
match self {
SignalEnum::Data { signal_type, .. } => Some(signal_type),
// TODO: Follow aliases?
SignalEnum::Alias { .. } => None,
}
.clone()
}
pub fn name_with_index(&self) -> String {
match self {
SignalEnum::Data {
name, index: None, ..
} => format!("{name}"),
SignalEnum::Data {
name,
index: Some(size),
..
} => format!("{name} {size}"),
SignalEnum::Alias { name, .. } => name.clone(),
}
}
pub fn index(&self) -> Option<String> {
match self {
SignalEnum::Data { index, .. } => index.clone(),
SignalEnum::Alias { .. } => None,
}
}
}
// helper functions ultimately used by Signal's query functions later on
impl SignalEnum {
/// Computes the bytes required to store a signal's numerical value
/// using the num_bits which another function would provide from
/// the num_bits field of the Signal::Data variant.
pub(super) fn bytes_required(num_bits: u32, name: &String) -> Result<u16, String> {
let bytes_required = (num_bits / 8) + if (num_bits % 8) > 0 { 1 } else { 0 };
let bytes_required = u16::try_from(bytes_required).map_err(|_| {
format!(
"Error near {}:{}. Signal {name} of length num_bits requires \
{bytes_required} > 65536 bytes.",
file!(),
line!()
)
})?;
Ok(bytes_required)
}
/// This function takes an event_idx which(is used to index into the
/// global timeline field of a VCD struct instance) and computes
/// the time pointed at by event_idx.
/// This function also uses the same idx to index into the
/// string_vals field of an instance of the Signal::Data variant
/// and gets a string value.
/// The function returns a tuple of the timestamp and string value.
fn time_and_str_val_at_event_idx(
&self,
event_idx: usize,
tmstmps_encoded_as_u8s: &Vec<u8>,
) -> Result<(TimeStamp, &str), SignalErrors> {
let (
string_vals,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
byte_len_of_string_tmstmp_vals_on_tmln,
) = match self {
SignalEnum::Data {
string_vals,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
byte_len_of_string_tmstmp_vals_on_tmln,
..
} => Ok((
string_vals,
lsb_indxs_of_string_tmstmp_vals_on_tmln,
byte_len_of_string_tmstmp_vals_on_tmln,
)),
SignalEnum::Alias { .. } => Err(SignalErrors::PointsToAlias),
}?;
// get index
let LsbIdxOfTmstmpValOnTmln(timestamp_idx) =
lsb_indxs_of_string_tmstmp_vals_on_tmln[event_idx];
let timestamp_idx = timestamp_idx as usize;
if byte_len_of_string_tmstmp_vals_on_tmln.is_empty() {
return Err(SignalErrors::EmptyTimeline);
}
// form timestamp
let byte_len = byte_len_of_string_tmstmp_vals_on_tmln[event_idx] as usize;
let timestamp = &tmstmps_encoded_as_u8s[timestamp_idx..(timestamp_idx + byte_len)];
let timestamp = BigUint::from_bytes_le(timestamp);
// get signal value
let signal_val = string_vals[event_idx].as_str();
Ok((timestamp, signal_val))
}
/// This function takes an event_idx which(is used to index into the
/// global timeline field of a VCD struct instance) and computes
/// the time pointed at by event_idx.
/// This function also uses the same idx to index into the
/// nums_encoded_as_fixed_width_le_u8 and
/// byte_len_of_num_tmstmp_vals_on_tmln fields of an instance
/// of the Signal::Data variant to compute the signal's corresponding
/// numerical value at the time pointed at by event_didx.
/// The function returns a tuple of the timestamp and numerical
/// value.
fn time_and_num_val_at_event_idx(
&self,
event_idx: usize,
tmstmps_encoded_as_u8s: &Vec<u8>,
) -> Result<(TimeStamp, SignalValNum), SignalErrors> {
let (
num_bytes,
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
) = match self {
SignalEnum::Data {
num_bytes,
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
..
} => Ok((
num_bytes,
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
byte_len_of_num_tmstmp_vals_on_tmln,
)),
SignalEnum::Alias { .. } => Err(SignalErrors::PointsToAlias),
}?;
// get index
let LsbIdxOfTmstmpValOnTmln(timestamp_idx) =
lsb_indxs_of_num_tmstmp_vals_on_tmln[event_idx];
let timestamp_idx = timestamp_idx as usize;
// form timestamp
let byte_len = byte_len_of_num_tmstmp_vals_on_tmln[event_idx] as usize;
let timestamp = &tmstmps_encoded_as_u8s[timestamp_idx..(timestamp_idx + byte_len)];
let timestamp = BigUint::from_bytes_le(timestamp);
// get signal value
let bytes_per_value = num_bytes.ok_or_else(|| SignalErrors::NoNumBytes)?;
let bytes_per_value = bytes_per_value as usize;
let start_idx = event_idx * bytes_per_value;
let end_idx = (event_idx + 1) * bytes_per_value;
let signal_val = &nums_encoded_as_fixed_width_le_u8[start_idx..end_idx];
let signal_val = BigUint::from_bytes_le(signal_val);
Ok((timestamp, signal_val))
}
fn bits_required(&self) -> Option<u32> {
match self {
SignalEnum::Data { num_bits, .. } => *num_bits,
// TODO: Follow aliases?
SignalEnum::Alias { .. } => None,
}
}
}
// Val and string query functions.
// Function that take in a desired time on the timeline for a
// specific signal and return a numerical or string value in a Result,
// or an error in a Result.
impl SignalEnum {
pub fn query_string_val_on_tmln(
&self,
desired_time: &BigUint,
tmstmps_encoded_as_u8s: &Vec<u8>,
all_signals: &Vec<SignalEnum>,
) -> Result<QueryResult<String>, SignalErrors> {
let signal_idx = match self {
Self::Data { self_idx, .. } => {
let SignalIdx(idx) = self_idx;
*idx
}
Self::Alias {
name: _,
signal_alias,
path: _,
} => {
let SignalIdx(idx) = signal_alias;
*idx
}
};
// if the signal idx points to data variant of the signal,
// extract:
// 1. the vector of string values
// 2. the vector of indices into timeline where events occur
// for this signal
// else we propagate Err(..).
let (string_vals, lsb_indxs_of_string_tmstmp_vals_on_tmln) = match &all_signals[signal_idx]
{
SignalEnum::Data {
ref string_vals,
ref lsb_indxs_of_string_tmstmp_vals_on_tmln,
..
} => Ok((string_vals, lsb_indxs_of_string_tmstmp_vals_on_tmln)),
SignalEnum::Alias { .. } => Err(SignalErrors::PointsToAlias),
}?;
// this signal should at least have some events, otherwise, trying to index into
// an empty vector later on would fail
if lsb_indxs_of_string_tmstmp_vals_on_tmln.is_empty() {
return Ok(QueryResult {
current: None,
next: None
});
}
// the vector of string timeline lsb indices should have the same
// length as the vector of string values
if string_vals.len() != lsb_indxs_of_string_tmstmp_vals_on_tmln.len() {
return Err(SignalErrors::StrTmlnLenMismatch);
}
// check if we're requesting a value that occurs before the recorded
// start of the timeline
let (timeline_start_time, _) =
self.time_and_str_val_at_event_idx(0, tmstmps_encoded_as_u8s)?;
if *desired_time < timeline_start_time {
return Ok(QueryResult {
current: None,
next: Some(timeline_start_time),
});
}
let mut lower_idx = 0usize;
let mut upper_idx = lsb_indxs_of_string_tmstmp_vals_on_tmln.len() - 1;
let (timeline_end_time, timeline_end_val) =
self.time_and_str_val_at_event_idx(upper_idx, tmstmps_encoded_as_u8s)?;
// check if we're requesting a value that occurs beyond the end of the timeline,
// if so, return the last value in this timeline
if *desired_time > timeline_end_time {
return Ok(QueryResult {
current: Some((timeline_end_time, timeline_end_val.to_string())),
next: None,
});
}
// This while loop is the meat of the lookup. Performance is log2(n),
// where n is the number of events on the timeline.
// We can assume that by the time we get here, that the desired_time
// is an event that occurs on the timeline, given that we handle any events
// occuring after or before the recorded tiimeline in the code above.
while lower_idx <= upper_idx {
let mid_idx = lower_idx + ((upper_idx - lower_idx) / 2);
let (curr_time, curr_val) =
self.time_and_str_val_at_event_idx(mid_idx, tmstmps_encoded_as_u8s)?;
let ordering = curr_time.cmp(desired_time);
match ordering {
std::cmp::Ordering::Less => {
lower_idx = mid_idx + 1;
}
std::cmp::Ordering::Equal => {
let next_time = if mid_idx < lsb_indxs_of_string_tmstmp_vals_on_tmln.len() - 1 {
Some(
self.time_and_str_val_at_event_idx(
mid_idx + 1,
tmstmps_encoded_as_u8s,
)?
.0,
)
} else {
None
};
return Ok(QueryResult {
current: Some((curr_time, curr_val.to_string())),
next: next_time,
});
}
std::cmp::Ordering::Greater => {
upper_idx = mid_idx - 1;
}
}
}
let (left_time, left_val) =
self.time_and_str_val_at_event_idx(lower_idx - 1, tmstmps_encoded_as_u8s)?;
let (right_time, _) =
self.time_and_str_val_at_event_idx(lower_idx, tmstmps_encoded_as_u8s)?;
let ordered_left = left_time < *desired_time;
let ordered_right = *desired_time < right_time;
if !(ordered_left && ordered_right) {
return Err(SignalErrors::OrderingFailure {
lhs_time: left_time,
mid_time: desired_time.clone(),
rhs_time: right_time,
});
}
Ok(QueryResult {
current: Some((left_time, left_val.to_string())),
next: Some(right_time),
})
}
pub fn query_num_val_on_tmln(
&self,
desired_time: &BigUint,
tmstmps_encoded_as_u8s: &Vec<u8>,
all_signals: &Vec<SignalEnum>,
) -> Result<QueryResult<BigUint>, SignalErrors> {
let signal_idx = match self {
Self::Data { self_idx, .. } => {
let SignalIdx(idx) = self_idx;
*idx
}
Self::Alias {
name: _,
path: _,
signal_alias,
} => {
let SignalIdx(idx) = signal_alias;
*idx
}
};
// if the signal idx points to data variant of the signal,
// extract:
// 1. the vector of LE u8 compressed values
// 2. the vector of indices into timeline where events occur
// for this signal
// 3. the number of bytes per value for this signal
// else we propagate Err(..).
let (nums_encoded_as_fixed_width_le_u8, lsb_indxs_of_num_tmstmp_vals_on_tmln, num_bytes) =
match &all_signals[signal_idx] {
SignalEnum::Data {
num_bytes,
ref nums_encoded_as_fixed_width_le_u8,
ref lsb_indxs_of_num_tmstmp_vals_on_tmln,
..
} => {
if num_bytes.is_none() {
return Err(SignalErrors::NoNumBytes);
}
Ok((
nums_encoded_as_fixed_width_le_u8,
lsb_indxs_of_num_tmstmp_vals_on_tmln,
num_bytes,
))
}
SignalEnum::Alias { .. } => Err(SignalErrors::PointsToAlias),
}?;
// this signal should at least have some events, otherwise, trying to index into
// an empty vector later on would fail
if lsb_indxs_of_num_tmstmp_vals_on_tmln.is_empty() {
return Ok(QueryResult {
current: None,
next: None
});
}
// assertion that value_sequence is a proper multiple of
// timeline_markers
let bytes_required = num_bytes.ok_or_else(|| {
SignalErrors::Other(format!(
"Error near {}:{}. num_bytes empty.",
file!(),
line!()
))
})?;
if nums_encoded_as_fixed_width_le_u8.len()
!= (lsb_indxs_of_num_tmstmp_vals_on_tmln.len() * (bytes_required as usize))
{
return Err(SignalErrors::TimelineNotMultiple);
}
// check if we're requesting a value that occurs before the recorded
// start of the timeline
let (timeline_start_time, _) =
self.time_and_num_val_at_event_idx(0, tmstmps_encoded_as_u8s)?;
if *desired_time < timeline_start_time {
return Ok(QueryResult {
current: None,
next: Some(timeline_start_time),
});
}
let mut lower_idx = 0usize;
let mut upper_idx = lsb_indxs_of_num_tmstmp_vals_on_tmln.len() - 1;
let (timeline_end_time, timeline_end_val) =
self.time_and_num_val_at_event_idx(upper_idx, tmstmps_encoded_as_u8s)?;
// check if we're requesting a value that occurs beyond the end of the timeline,
// if so, return the last value in this timeline
if *desired_time > timeline_end_time {
return Ok(QueryResult {
current: Some((timeline_end_time, timeline_end_val)),
next: None,
});
}
// This while loop is the meat of the lookup. Performance is log2(n),
// where n is the number of events on the timeline.
// We can assume that by the time we get here, that the desired_time
// is an event that occurs on the timeline, given that we handle any events
// occuring after or before the recorded tiimeline in the code above.
while lower_idx <= upper_idx {
let mid_idx = lower_idx + ((upper_idx - lower_idx) / 2);
let (curr_time, curr_val) =
self.time_and_num_val_at_event_idx(mid_idx, tmstmps_encoded_as_u8s)?;
let ordering = curr_time.cmp(desired_time);
match ordering {
std::cmp::Ordering::Less => {
lower_idx = mid_idx + 1;
}
std::cmp::Ordering::Equal => {
let next_time = if mid_idx < lsb_indxs_of_num_tmstmp_vals_on_tmln.len() - 1 {
Some(
self.time_and_num_val_at_event_idx(
mid_idx + 1,
tmstmps_encoded_as_u8s,
)?
.0,
)
} else {
None
};
return Ok(QueryResult {
current: Some((curr_time, curr_val)),
next: next_time,
});
}
std::cmp::Ordering::Greater => {
upper_idx = mid_idx - 1;
}
}
}
let (left_time, left_val) =
self.time_and_num_val_at_event_idx(lower_idx - 1, tmstmps_encoded_as_u8s)?;
let (right_time, _) =
self.time_and_num_val_at_event_idx(lower_idx, tmstmps_encoded_as_u8s)?;
let ordered_left = left_time < *desired_time;
let ordered_right = *desired_time < right_time;
if !(ordered_left && ordered_right) {
return Err(SignalErrors::OrderingFailure {
lhs_time: left_time,
mid_time: desired_time.clone(),
rhs_time: right_time,
});
}
return Ok(QueryResult {
current: Some((left_time, left_val)),
next: Some(right_time),
});
}
}

View file

@ -1,144 +1,142 @@
// use crate::Signal;
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use super::signal::{Signal, SignalEnum};
use chrono::prelude::{DateTime, Utc};
use num::BigUint;
use std::fmt;
#[derive(Debug, Clone)]
pub struct Version(pub String);
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum Timescale {
Fs,
Ps,
Ns,
Us,
Ms,
S,
Unit,
}
impl fmt::Display for Timescale {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Timescale::Fs => write!(f, "fs"),
Timescale::Ps => write!(f, "ps"),
Timescale::Ns => write!(f, "ns"),
Timescale::Us => write!(f, "μs"),
Timescale::Ms => write!(f, "ms"),
Timescale::S => write!(f, "s"),
Timescale::Unit => write!(f, "unit"),
}
}
}
use chrono::prelude::*;
#[derive(Debug)]
pub struct Metadata {
pub date: Option<DateTime<Utc>>,
pub version: Option<Version>,
pub timescale: (Option<u32>, Timescale),
pub(super) struct Version(pub String);
#[derive(Debug)]
pub(super) enum Timescale {Fs, Ps, Ns, Us, Ms, S, Unit}
#[derive(Debug)]
pub(super) struct Metadata {
pub(super) date : Option<DateTime<Utc>>,
pub(super) version : Option<Version>,
pub(super) timescale : (Option<u32>, Timescale)}
#[derive(Debug, Copy, Clone)]
pub(super) struct ScopeIdx(pub(super) usize);
#[derive(Debug, Copy, Clone)]
pub(super) struct SignalIdx(pub(super) usize);
#[derive(Debug, Copy, Clone)]
pub(super) struct TimelineIdx(pub(super) u32);
#[derive(Debug, Copy, Clone)]
pub struct StartIdx(pub(super) u32);
#[derive(Debug)]
pub(super) enum SigType {Integer, Parameter, Real, Reg, Str, Wire, Tri1, Time}
#[derive(Debug)]
pub(super) enum Signal{
Data{
name : String,
sig_type : SigType,
// I've seen a 0 bit signal parameter in a xilinx
// simulation before that gets assigned 1 bit values.
// I consider this to be bad behavior. We capture such
// errors in the following type.
signal_error : Option<String>,
num_bits : Option<usize>,
// TODO : may be able to remove self_idx
self_idx : SignalIdx,
// we could encounter a mix of pure values and strings
// for the same signal timeline
u8_timeline : Vec<u8>,
u8_timeline_markers : Vec<TimelineIdx>,
string_timeline : Vec<String>,
string_timeline_markers : Vec<TimelineIdx>,
scope_parent : ScopeIdx},
Alias{
name : String,
signal_alias : SignalIdx}
}
// We do a lot of arena allocation in this codebase.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct ScopeIdx(pub usize);
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct SignalIdx(pub usize);
#[derive(Debug)]
pub(super) struct Scope {
pub(super) name : String,
pub(super) parent_idx : Option<ScopeIdx>,
pub(super) self_idx : ScopeIdx,
pub(super) child_signals : Vec<SignalIdx>,
pub(super) child_scopes: Vec<ScopeIdx>,
}
pub(super) child_scopes : Vec<ScopeIdx>}
// TODO: document how timeline is represented
#[derive(Debug)]
pub struct VCD {
pub metadata: Metadata,
// Since we only need to store values when there is an actual change
// in the timeline, we keep a vector that stores the time at which an
// event occurs. Time t is always stored/encoded as the minimum length sequence
// of u8.
// We essentially fill ``tmstmps_encoded_as_u8s`` with BigUints converted
// to sequences of little endian u8s.
// It is up to the signals to keep track of the start/stop indices in the
// vector of u8s that constitute a timestamp value. Signals don't have to
// keep track of all timestamp values, a given signal only needs to keep
// track of the timestamps at which the given signal value changes.
pub(super) tmstmps_encoded_as_u8s: Vec<u8>,
pub(super) all_signals: Vec<SignalEnum>,
pub(super) metadata : Metadata,
pub timeline : Vec<u8>,
pub timeline_markers : Vec<StartIdx>,
pub(super) all_signals : Vec<Signal>,
pub(super) all_scopes : Vec<Scope>,
pub(super) root_scopes: Vec<ScopeIdx>,
pub(super) largest_timestamp: Option<BigUint>,
}
pub(super) scope_roots : Vec<ScopeIdx>}
impl VCD {
pub fn root_scopes_by_idx(&self) -> Vec<ScopeIdx> {
self.root_scopes.clone()
}
pub fn child_scopes_by_idx(&self, scope_idx: ScopeIdx) -> Vec<ScopeIdx> {
let ScopeIdx(idx) = scope_idx;
let scope = &self.all_scopes[idx];
scope.child_scopes.clone()
}
pub fn get_children_signal_idxs(&self, scope_idx: ScopeIdx) -> Vec<SignalIdx> {
let ScopeIdx(idx) = scope_idx;
let scope = &self.all_scopes[idx];
scope.child_signals.clone()
}
pub fn scope_name_by_idx(&self, scope_idx: ScopeIdx) -> &String {
let ScopeIdx(idx) = scope_idx;
let scope = &self.all_scopes[idx];
&scope.name
}
pub fn signal_from_signal_idx(&self, idx: SignalIdx) -> Signal<'_> {
let SignalIdx(idx) = idx;
let signal_enum = &self.all_signals[idx];
return Signal(signal_enum);
}
/// We take in a Signal and attempt to de-alias that signal if it is of
/// variant ``Signal::Alias``. If it is of variant ``Signal::Alias`` and points to
/// another alias, that's an error. Otherwise, we return the ``Signal::Data``
/// pointed to by the ``Signal::Alias``.
/// If the Signal is of varint ``Signal::Data``, then that can be returned directly.
pub(super) fn dealiasing_signal_idx_to_signal_lookup_mut<'a>(
&'a mut self,
idx: &SignalIdx,
) -> Result<&'a mut SignalEnum, String> {
// get the signal pointed to be SignalIdx from the arena
let SignalIdx(idx) = idx;
let signal = &self.all_signals[*idx];
// TODO : make this a generic traversal function that applies specified
// functions upon encountering scopes and signals
fn print_scope_tree(
&self,
root_scope_idx : ScopeIdx,
depth : usize)
{
let all_scopes = &self.all_scopes;
let all_signals = &self.all_signals;
// dereference signal if Signal::Alias, or keep idx if Signal::Data
let signal_idx = match signal {
SignalEnum::Data { self_idx, .. } => *self_idx,
SignalEnum::Alias { signal_alias, .. } => *signal_alias,
let indent = " ".repeat(depth * 4);
let ScopeIdx(root_scope_idx) = root_scope_idx;
let root_scope = &all_scopes[root_scope_idx];
let root_scope_name = &root_scope.name;
println!("{indent}scope: {root_scope_name}");
for SignalIdx(ref signal_idx) in &root_scope.child_signals {
let child_signal = &all_signals[*signal_idx];
let name = match child_signal {
Signal::Data{name, ..} => {name}
Signal::Alias{name, ..} => {name}
};
println!("{indent} - sig: {name}")
}
println!();
// Should now point to Signal::Data variant, or else there's an error
let SignalIdx(idx) = signal_idx;
let signal = self.all_signals.get_mut(idx).unwrap();
for scope_idx in &root_scope.child_scopes {
self.print_scope_tree(*scope_idx, depth+1);
}
}
pub fn print_scopes(&self) {
for scope_root in &self.scope_roots {
self.print_scope_tree(*scope_root, 0);
}
}
pub fn print_longest_signal(&self) {
let mut idx = 0usize;
let mut max_len = 0usize;
let mut signal_name = String::new();
for signal in &self.all_signals {
match signal {
SignalEnum::Data { .. } => Ok(signal),
SignalEnum::Alias { .. } => Err(format!(
"Error near {}:{}. A signal alias shouldn't \
point to a signal alias.",
file!(),
line!()
)),
Signal::Alias {..} => {}
Signal::Data {
name,
self_idx,
u8_timeline,
.. } => {
if u8_timeline.len() > max_len {
max_len = u8_timeline.len();
let SignalIdx(idx_usize) = self_idx;
idx = *idx_usize;
signal_name = name.clone();
}
}
}
}
pub fn max_timestamp(&self) -> &Option<BigUint> {
&self.largest_timestamp
dbg!((idx, max_len, signal_name));
}
}

View file

@ -1,86 +0,0 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
#[derive(Debug)]
pub(super) enum BinaryParserErrTypes {
XValue,
ZValue,
UValue,
HValue,
LValue,
DashValue,
WValue,
OtherValue(char),
TooLong,
}
// We build a quick and not so dirty bit string parser.
fn base2_str_to_byte(word: &[u8]) -> Result<u8, BinaryParserErrTypes> {
let mut val = 0u8;
// shouldn't have more than 8 chars in str
let len = word.len();
if len > 8 {
return Err(BinaryParserErrTypes::TooLong);
}
let bit_lut = [
0b0000_0001u8,
0b0000_0010u8,
0b0000_0100u8,
0b0000_1000u8,
0b0001_0000u8,
0b0010_0000u8,
0b0100_0000u8,
0b1000_0000u8,
];
for (idx, chr) in word.iter().rev().enumerate() {
match chr {
b'1' => val |= bit_lut[idx],
b'0' => {}
b'x' | b'X' => return Err(BinaryParserErrTypes::XValue),
b'z' | b'Z' => return Err(BinaryParserErrTypes::ZValue),
b'u' | b'U' => return Err(BinaryParserErrTypes::UValue),
b'l' | b'L' => return Err(BinaryParserErrTypes::LValue),
b'h' | b'H' => return Err(BinaryParserErrTypes::HValue),
b'w' | b'W' => return Err(BinaryParserErrTypes::WValue),
b'-' => return Err(BinaryParserErrTypes::DashValue),
_ => return Err(BinaryParserErrTypes::OtherValue(*chr as char)),
}
}
Ok(val)
}
pub(super) fn binary_str_to_vec_u8(binary_str: &str) -> Result<Vec<u8>, BinaryParserErrTypes> {
let mut vec_u8: Vec<u8> = Vec::new();
let binary_str_as_bytes = binary_str.as_bytes();
let mut tail_idx = binary_str_as_bytes.len();
// clamp head if provided binary str is less than 8 long
let mut head_idx = if tail_idx >= 8 {
binary_str_as_bytes.len() - 8
} else {
0
};
while tail_idx > 0 {
let curr_b_val = &binary_str_as_bytes[head_idx..tail_idx];
let val_u8 = base2_str_to_byte(curr_b_val)?;
vec_u8.push(val_u8);
if head_idx < 8 {
head_idx = 0
} else {
head_idx -= 8;
}
if tail_idx < 8 {
tail_idx = 0
} else {
tail_idx -= 8;
}
}
Ok(vec_u8)
}

View file

@ -1,77 +0,0 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
// TODO: we should eventually be able to only test on just
// the files const
pub const FILES: [&str; 31] = [
"./tests/vcd-files/aldec/SPI_Write.vcd",
"./tests/vcd-files/ghdl/alu.vcd",
"./tests/vcd-files/ghdl/idea.vcd",
"./tests/vcd-files/ghdl/pcpu.vcd",
"./tests/vcd-files/gtkwave-analyzer/perm_current.vcd",
"./tests/vcd-files/icarus/CPU.vcd",
"./tests/vcd-files/icarus/rv32_soc_TB.vcd",
"./tests/vcd-files/icarus/test1.vcd",
"./tests/vcd-files/model-sim/CPU_Design.msim.vcd",
"./tests/vcd-files/model-sim/clkdiv2n_tb.vcd",
"./tests/vcd-files/my-hdl/Simple_Memory.vcd",
"./tests/vcd-files/my-hdl/sigmoid_tb.vcd",
"./tests/vcd-files/my-hdl/top.vcd",
"./tests/vcd-files/ncsim/ffdiv_32bit_tb.vcd",
"./tests/vcd-files/quartus/mipsHardware.vcd",
"./tests/vcd-files/quartus/wave_registradores.vcd",
"./tests/vcd-files/questa-sim/dump.vcd",
"./tests/vcd-files/questa-sim/test.vcd",
"./tests/vcd-files/riviera-pro/dump.vcd",
"./tests/vcd-files/systemc/waveform.vcd",
"./tests/vcd-files/treadle/GCD.vcd",
"./tests/vcd-files/vcs/Apb_slave_uvm_new.vcd",
"./tests/vcd-files/vcs/datapath_log.vcd",
"./tests/vcd-files/vcs/processor.vcd",
"./tests/vcd-files/verilator/swerv1.vcd",
"./tests/vcd-files/verilator/vlt_dump.vcd",
"./tests/vcd-files/vivado/iladata.vcd",
"./tests/vcd-files/xilinx_isim/test.vcd",
"./tests/vcd-files/xilinx_isim/test1.vcd",
// TODO : add signal ignore list to handle bitwidth mismatches
"./tests/vcd-files/xilinx_isim/test2x2_regex22_string1.vcd",
"./tests/vcd-files/scope_with_comment.vcd",
];
pub const GOOD_DATE_FILES: [&str; 24] = [
"./test-vcd-files/aldec/SPI_Write.vcd",
"./test-vcd-files/ghdl/alu.vcd",
"./test-vcd-files/ghdl/idea.vcd",
"./test-vcd-files/ghdl/pcpu.vcd",
"./test-vcd-files/gtkwave-analyzer/perm_current.vcd",
"./test-vcd-files/icarus/CPU.vcd",
"./test-vcd-files/icarus/rv32_soc_TB.vcd",
"./test-vcd-files/icarus/test1.vcd",
"./test-vcd-files/model-sim/CPU_Design.msim.vcd",
"./test-vcd-files/model-sim/clkdiv2n_tb.vcd",
"./test-vcd-files/my-hdl/Simple_Memory.vcd",
"./test-vcd-files/my-hdl/sigmoid_tb.vcd",
"./test-vcd-files/my-hdl/top.vcd",
"./test-vcd-files/questa-sim/dump.vcd",
"./test-vcd-files/questa-sim/test.vcd",
"./test-vcd-files/riviera-pro/dump.vcd",
"./test-vcd-files/vcs/Apb_slave_uvm_new.vcd",
"./test-vcd-files/vcs/datapath_log.vcd",
"./test-vcd-files/vcs/processor.vcd",
"./test-vcd-files/verilator/swerv1.vcd",
"./test-vcd-files/verilator/vlt_dump.vcd",
"./test-vcd-files/xilinx_isim/test.vcd",
"./test-vcd-files/xilinx_isim/test1.vcd",
"./test-vcd-files/xilinx_isim/test2x2_regex22_string1.vcd",
];
pub const BAD_DATE_FILES: [&str; 6] = [
"./test-vcd-files/ncsim/ffdiv_32bit_tb.vcd",
"./test-vcd-files/quartus/mipsHardware.vcd",
"./test-vcd-files/quartus/wave_registradores.vcd",
"./test-vcd-files/systemc/waveform.vcd",
"./test-vcd-files/treadle/GCD.vcd",
"./test-vcd-files/vivado/iladata.vcd",
];

View file

@ -1,22 +0,0 @@
// Copyright (C) 2022 Yehowshua Immanuel
// This program is distributed under both the GPLV3 license
// and the YEHOWSHUA license, both of which can be found at
// the root of the folder containing the sources for this program.
use std::fs::File;
mod files;
use files::*;
#[test]
fn parse_all_VCDs() {
// see if we can parse all signal trees successfully
for file_name in FILES {
let file = File::open(file_name).unwrap();
let vcd = fastwave_backend::parse_vcd(file);
if !vcd.is_ok() {
dbg!(file_name);
vcd.unwrap();
}
}
}

View file

@ -1,296 +0,0 @@
$date
Sat Dec 26 15:33:14 2020
$end
$version
ModelSim Version 10.5b
$end
$timescale
1ns
$end
$scope module clkdiv2n_tb $end
$comment foo $end
$var reg 1 ! clk $end
$var reg 1 " reset $end
$var wire 1 # clk_out $end
$scope module t1 $end
$var parameter 32 $ WIDTH $end
$var parameter 32 % N $end
$var wire 1 & clk $end
$var wire 1 ' reset $end
$var wire 1 # clk_out $end
$var reg 3 ( r_reg [2:0] $end
$var wire 1 ) r_nxt [2] $end
$var wire 1 * r_nxt [1] $end
$var wire 1 + r_nxt [0] $end
$var reg 1 , clk_track $end
$upscope $end
$comment foo $end
$upscope $end
$comment foo $end
$enddefinitions $end
#0
$comment foo $end
$dumpvars
0!
x"
bx (
x,
b11 $
b110 %
x#
x+
x*
x)
x'
0&
$end
#5
1"
1'
b0 (
0,
1+
0*
0)
0#
#10
1!
1&
#15
0"
0'
#20
0!
0&
#30
1!
1&
b1 (
0+
1*
#40
0!
0&
#50
1!
1&
b10 (
1+
#60
0!
0&
#70
1!
1&
b11 (
0+
0*
1)
#80
0!
0&
#90
1!
1&
b100 (
1+
#100
0!
0&
#110
1!
1&
b101 (
0+
1*
#120
0!
0&
#130
1!
1&
b0 (
1,
1+
0*
0)
1#
#140
0!
0&
#150
1!
1&
b1 (
0+
1*
#160
0!
0&
#170
1!
1&
b10 (
1+
#180
0!
0&
#190
1!
1&
b11 (
0+
0*
1)
#200
0!
0&
#210
1!
1&
b100 (
1+
#220
0!
0&
#230
1!
1&
b101 (
0+
1*
#240
0!
0&
#250
1!
1&
b0 (
0,
1+
0*
0)
0#
#260
0!
0&
#270
1!
1&
b1 (
0+
1*
#280
0!
0&
#290
1!
1&
b10 (
1+
#300
0!
0&
#310
1!
1&
b11 (
0+
0*
1)
#320
0!
0&
#330
1!
1&
b100 (
1+
#340
0!
0&
#350
1!
1&
b101 (
0+
1*
#360
0!
0&
#370
1!
1&
b0 (
1,
1+
0*
0)
1#
#380
0!
0&
#390
1!
1&
b1 (
0+
1*
#400
0!
0&
#410
1!
1&
b10 (
1+
#420
0!
0&
#430
1!
1&
b11 (
0+
0*
1)
#440
0!
0&
#450
1!
1&
b100 (
1+
#460
0!
0&
#470
1!
1&
b101 (
0+
1*
#480
0!
0&
#490
1!
1&
b0 (
0,
1+
0*
0)
0#
#500
0!
0&
#510
1!
1&
b1 (
0+
1*